Alternativas de materiais e processos mais sustentáveis para a indústria têxtil atual – uma revisão

Autores

DOI:

https://doi.org/10.5965/1982615x14322021122

Palavras-chave:

Vestuário, Materiais têxteis, Sustentabilidade

Resumo

Inúmeros estudos são realizados todos os anos no intuito de descobrir formas inovadoras de elaborar têxteis para o conforto, segurança e, muitas vezes, que representem as ideologias do consumidor. No entanto, devido à problemática da indústria têxtil relacionada à degradação ambiental, pesquisadores têm realizado estudos acerca de materiais e processos que sejam mais sustentáveis. Portanto, o presente artigo propõe uma revisão bibliográfica de caráter analítico, em quatro bases de dados “Scopus”, “Science Direct” e “Proquest”, sobre materiais e processos mais sustentáveis utilizados no setor de têxteis entre os períodos de 2015 e 2020. Os resultados mostram 38 artigos sobre alternativas sustentáveis de materiais e processos para o mercado atual, bem como sobre pesquisas em andamento sobre novas possibilidades de têxteis nos campos da engenharia, biotecnologia, design, entre outros.

Biografia do Autor

Ana Paula Provin, Universidade do Sul de Santa Catarina (UNISUL), Florianópolis, SC

Mestranda do programa de pós-graduação em Ciências ambientais pela Universidade do Sul de Santa Catarina (UNISUL), formada em Design de Moda pela  Universidade do Sul de Santa Catarina (UNISUL) e Pedagogia pela Universidade do Estado de Santa Catarina (UDESC).

Anelise Leal Vieira Cubas, Universidade do Sul de Santa Catarina (UNISUL), Florianópolis, SC.

Possui graduação em Engenharia Química pela Fundação Universidade Regional de Blumenau (1996), mestrado em Engenharia Ambiental pela Universidade Federal de Santa Catarina (1999), doutorado e pós-doutorado em Química pela Universidade Federal de Santa Catarina (2004). Atualmente é professora do quadro permanente do Mestrado em Ciências Ambientais (PPGCA), diretora do laboratório de tecnologia a plasma da Universidade do Sul de Santa Catarina e coordenadora do grupo de pesquisa em tecnologias limpas dos processos produtivos (TECLIMP).

Ana Regina de Aguiar Dutra, Universidade do Sul de Santa Catarina (UNISUL), Florianópolis, SC.

Possui graduação em Matemática pela Universidade Federal de Santa Catarina (1986), mestrado em Engenharia de Produção pela Universidade Federal de Santa Catarina (1990) e doutorado em Engenharia de Produção pela Universidade Federal de Santa Catarina (1999). Atualmente é professor titular da Universidade do Sul de Santa Catarina. Tem experiência na área de Engenharia de Produção, com ênfase em Ergonomia, atuando principalmente nos seguintes temas: ergonomia, produtos e processos produtivos sustentáveis e saudáveis e educação. Faz parte do quadro docente do Programa de Pós-Graduação em Ciências Ambientais (PPGCA/UNISUL). Coordena na Unisul o projeto "Change the Climate: Assuring the Quality of Environmental Strategies in Latin-American Higher Education" do Erasmus + Programme of the European Union. Na gestão universitária, coordena institucionalmente a área de Pesquisa e Pós-Graduação/Unisul.

Referências

Bai, Z., Zhang, Z., Li, J., & Guo, J. (2019). Nano Energy Textile-based triboelectric nanogenerators with high-performance via optimized functional elastomer composited tribomaterials as wearable power source. Nano Energy, 65(August), 104012. https://doi.org/10.1016/j.nanoen.2019.104012

Baiardi, D., & Bianchi, C. (2019). At the roots of China’s striking performance in textile exports: A comparison with its main Asian competitors. China Economic Review, 54(August 2018), 367–389. https://doi.org/10.1016/j.chieco.2019.02.001

Baliarsingh, S., Behera, P. C., Jena, J., Das, T., & Das, N. B. (2015). UV reflectance attributed direct correlation to colour strength and absorbance of natural dyed yarn with respect to mordant use and their potential antimicrobial efficac. Journal of Cleaner Production, 102, 485–492. https://doi.org/10.1016/j.jclepro.2015.04.112

Borsa, J., László, K., Boguslavsky, L., Takács, E., Rácz, I., Tóth, T., & Szabó, D. (2016). Effect of mild alkali / ultrasound treatment on flax and hemp fibres : the different responses of the two substrates. Cellulose (2016), 23, 2117–2128. https://doi.org/10.1007/s10570-016-0909-y

Busi, E., Maranghi, S., Corsi, L., & Basosi, R. (2016a). Environmental sustainability evaluation of innovative self-cleaning textiles. Journal of Cleaner Production, 133, 439–450. https://doi.org/10.1016/j.jclepro.2016.05.072

Butola, B. S., Gupta, A., & Roy, A. (2019). Multifunctional fi nishing of cellulosic fabric via facile , rapid in-situ green synthesis of AgNPs using pomegranate peel extract biomolecules. Sustainable Chemistry and Pharmacy, 12(December 2018), 100135. https://doi.org/10.1016/j.scp.2019.100135

Camere, S., & Karana, E. (2018). Fabricating materials from living organisms : An emerging design practice. Journal of Cleaner Production, 186, 570–584. https://doi.org/10.1016/j.jclepro.2018.03.081

Campbell, D., Picard-Aitken, M., Côté, G., Caruso, J., Valentim, R., Edmonds, S., … Archambault, É. (2010). Bibliometrics as a performance measurement tool for research evaluation: The case of research funded by the national cancer institute of Canada. American Journal of Evaluation, 31(1), 66–83. https://doi.org/10.1177/1098214009354774

Costa, A. F. de S., de Amorim, J. D. P., Almeida, F. C. G., de Lima, I. D., de Paiva, S. C., Rocha, M. A. V., … Sarubbo, L. A. (2019). Dyeing of bacterial cellulose films using plant-based natural dyes. International Journal of Biological Macromolecules, 121, 580–587. https://doi.org/10.1016/j.ijbiomac.2018.10.066

De Rossi, D., Coyle, S., Wallace, G., Wu, Y., Diamond, D., & Lau, K.-T. (2011). Smart Nanotextiles: A Review of Materials and Applications. MRS Bulletin, 32(05), 434–442. https://doi.org/10.1557/mrs2007.67

Domskiene, J., Sederaviciute, F., & Simonaityte, J. (2018). Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology, 31(5), 644–652. https://doi.org/10.1108/IJCST-02-2019-0010

Eifler, C., & Diekamp, K. (2013). Consumer Acceptance of Sustainable Fashion in Germany. Research Journal of Textile and Apparel, 17(1), 70–77. https://doi.org/10.1108/RJTA-17-01-2013-B007

El, I., Ben, R., Faidi, K., Ben, M., & Farouk, M. (2015). Mixture approach for optimizing the recovery of colored phenolics from red pepper ( Capsicum annum L .) by-products as potential source of natural dye and assessment of its antimicrobial activity. Industrial Crops & Products, 70, 34–40. https://doi.org/10.1016/j.indcrop.2015.03.017

Fazita, M. R. N., Jayaraman, K., Bhattacharyya, D., & Haafiz, M. K. M. (2016). Green Composites Made of Bamboo Fabric and Poly ( Lactic ) Acid for Packaging Applications — A Review. Materials, 9(435), 1–29. https://doi.org/10.3390/ma9060435

Fernanda, A., Costa, D. S., Amorim, J. D. P. De, Carolina, F., Almeida, G., Diego, I., … Sarubbo, L. A. (2019). Dyeing of bacterial cellulose fi lms using plant-based natural dyes. International Journal of Biological Macromolecules, 121, 580–587. https://doi.org/10.1016/j.ijbiomac.2018.10.066

Fröse, A., Schmidtke, K., Sukmann, T., Junger, I. J., & Ehrmann, A. (2019). Optik Application of natural dyes on diverse textile materials. Optik - International Journal for Light and Electron Optics, 181(December 2018), 215–219. https://doi.org/10.1016/j.ijleo.2018.12.099

Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., & Athanassiou, A. (2017). Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties. Scientific Reports, 7(December 2016), 1–11. https://doi.org/10.1038/srep41292

Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M., & Sixta, H. (2019). Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Management, 97, 88–96. https://doi.org/10.1016/j.wasman.2019.07.040

Hu, Y., Du, C., Pensupa, N., & Lin, C. S. K. (2018). Optimisation of fungal cellulase production from textile waste using experimental design. Process Safety and Environmental Protection, 118, 133–142. https://doi.org/10.1016/j.psep.2018.06.009

Jiang, Z. H. (2013). Art of Fashion Design Based on New Materials. Applied Mechanics and Materials, 340, 374–377. https://doi.org/10.4028/www.scientific.net/amm.340.374

Jose, S., Pandit, P., & Pandey, R. (2019). A potential agro waste for coloration and functional fi nishing of textiles. Industrial Crops & Products, 142(September), 111833. https://doi.org/10.1016/j.indcrop.2019.111833

Kan, C., Cheung, H., & Chan, Q. (2016). A study of plasma-induced ozone treatment on the colour fading of dyed cotton. Journal of Cleaner Production, 112, 3514–3524. https://doi.org/10.1016/j.jclepro.2015.10.100

Kocic, A., Bizjak, M., Popovic, D., Poparic, G. B., & Stankovic, S. B. (2019). UV protection afforded by textile fabrics made of natural and regenerated cellulose fi bres. Journal of Cleaner Production, 228, 1229–1237. https://doi.org/10.1016/j.jclepro.2019.04.355

Lagerwall, J. P. F. (2012). Switchable and responsive liquid crystal-functionalized microfibers produced via coaxial electrospinning. Emerging Liquid Crystal Technologies VII, 8279, 82790N. https://doi.org/10.1117/12.914959

Li, X., Hu, H., Hua, T., Xu, B., & Jiang, S. (2018). Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Research, 11(11), 5799–5811. https://doi.org/10.1007/s12274-018-2043-7

LURIE, Alison. A linguagem das roupas. Tradução Ana Luiza Dantas Borges. Rio de Janeiro: Rocco, 1997.

Mikucioniene, D., Cepukone, L., & Milasiene, D. (2018). Investigation on mechanical and thermal properties of knits from peat fibers and their combination with other natural fibers. Textile Research Journal, 88(14), 1660–1670. https://doi.org/10.1177/0040517517705633

Mishra, R., Behera, B. K., & Pal, B. P. (2012). Novelty of bamboo fabric. Journal of the Textile Institute, 103(3), 320–329. https://doi.org/10.1080/00405000.2011.576467

Moretto, A., Macchion, L., Lion, A., Caniato, F., Danese, P., & Vinelli, A. (2018). Designing a roadmap towards a sustainable supply chain : A focus on the fashion industry. Journal of Cleaner Production, 193, 169–184. https://doi.org/10.1016/j.jclepro.2018.04.273

Nayak, L., & Mishra, S. P. (2016). Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fashion and Textiles, 3(1), 1–23. https://doi.org/10.1186/s40691-015-0054-5

Ng, R., Yan, S., & Dong, L. (2013). Consumer Acceptance of Sustainable Design Strategy for Reducing Raw Material without Sacrificing Style Variety. Research Journal of Textile and Apparel, 17(2), 115–126. https://doi.org/10.1108/RJTA-17-02-2013-B014

Parisi, M. L., Fatarella, E., Spinelli, D., Pogni, R., & Basosi, R. (2015). Environmental impact assessment of an eco-ef fi cient production for coloured textiles. Journal of Cleaner Production, 108, 514–524. https://doi.org/10.1016/j.jclepro.2015.06.032

Partzsch, L., & Kemper, L. (2019). Cotton certification in Ethiopia : Can an increasing demand for certified textiles create a ‘ fashion revolution? Geoforum, 99(December 2018), 111–119. https://doi.org/10.1016/j.geoforum.2018.11.017

Phan, K., Broeck, E. Van Den, Speybroeck, V. Van, Clerck, K. De, Raes, K., & Meester, S. De. (2020). Dyes and Pigments The potential of anthocyanins from blueberries as a natural dye for cotton : A combined experimental and theoretical study. Dyes and Pigments, 176(January), 108180. https://doi.org/10.1016/j.dyepig.2019.108180

Prendeville, S., O’Connor, F., & Palmer, L. (2014). Material selection for eco-innovation: SPICE model. Journal of Cleaner Production, 85, 31–40. https://doi.org/10.1016/j.jclepro.2014.05.023

Qiu, Q., Zhu, M., Li, Z., Qiu, K., Liu, X., & Yu, J. (2019). Nano Energy Highly fl exible , breathable , tailorable and washable power generation fabrics for wearable electronics. Nano Energy, 58(January),750–758. https://doi.org/10.1016/j.nanoen.2019.02.010

Saraç, E. G., Öner, E., & Kahraman, M. V. (2019). Microencapsulated organic coconut oil as a natural phase change material for thermo-regulating cellulosic fabrics. Cellulose, 9, 1–12. https://doi.org/10.1007/s10570-019-02701-9

Sarier, N., & Onder, E. (2012). Organic phase change materials and their textile applications: An overview. Thermochimica Acta, 540, 7–60. https://doi.org/10.1016/j.tca.2012.04.013

Shabbir, M., Rather, L. J., Bukhari, M. N., Ul-, S., Shahid, M., Khan, M. A., & Mohammad, F. (2017). Light Fastness and Shade Variability of Tannin Colorant Dyed Wool with the Effect of Mordanting Methods Light Fastness and Shade Variability of Tannin Colorant Dyed Wool with the Effect of Mordanting Methods. Journal of Natural Fibers, 00(00), 1–14. https://doi.org/10.1080/15440478.2017.1408521

Shahid, M., & Rather, L. J. (2018). Simultaneous shade development , antibacterial , and antifungal functionalization of wool using Punica granatum L . Peel extract as a source of textile dye. Journal of Natural Fibers, 00(00), 1–12. https://doi.org/10.1080/15440478.2018.1428846

Stone, C., Windsor, F. M., Munday, M., & Durance, I. (2019). Science of the Total Environment Natural or synthetic – how global trends in textile usage threaten freshwater environments. Science of the Total Environment, xxx(xxxx), 134689. https://doi.org/10.1016/j.scitotenv.2019.134689

Tadesse, M., Ferri, A., Guan, J., Chen, G., Ferreira, J. A., & Nierstrasz, V. (2019). The Journal of Supercritical Fluids Single-step disperse dyeing and antimicrobial functionalization of polyester fabric with chitosan and derivative in supercritical carbon dioxide. The Journal of Supercritical Fluids, 147(August 2018), 231–240. https://doi.org/10.1016/j.supflu.2018.11.002

Tausif, M., Ahmad, F., Hussain, U., Basit, A., & Hussain, T. (2015). A comparative study of mechanical and comfort properties of bamboo viscose as an eco-friendly alternative to conventional cotton fi bre in polyester blended knitted fabrics. Journal of Cleaner Production, 89, 110–115. https://doi.org/10.1016/j.jclepro.2014.11.011

Velden, N. M. Van Der, Kuusk, K., & Köhler, A. R. (2015). Life cycle assessment and eco-design of smart textiles : The importance of material selection demonstrated through e-textile product redesign. Materials and Design, 84, 313–324. https://doi.org/10.1016/j.matdes.2015.06.129

Wizi, J., Wang, L., Hou, X., Tao, Y., Ma, B., & Yang, Y. (2018). Ultrasound-microwave assisted extraction of natural colorants from sorghum husk with di ff erent solvents. Industrial Crops & Products, 120(April), 203–213. https://doi.org/10.1016/j.indcrop.2018.04.068

Yan, S., Lu, J., Song, W., & Xiao, R. (2018). Flexible triboelectric nanogenerator based on cost-e ff ective thermoplastic polymeric nano fi ber membranes for body-motion energy harvesting with. Nano Energy, 48(January), 248–255. https://doi.org/10.1016/j.nanoen.2018.03.031

Yasin, S., & Sun, D. (2019). Propelling textile waste to ascend the ladder of sustainability: EOL study on probing environmental parity in technical textiles. Journal of Cleaner Production, 233, 1451–1464. https://doi.org/10.1016/j.jclepro.2019.06.009

Yim, S. M., Song, J. E., & Kim, H. R. (2017). Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, 59, 26–36. https://doi.org/10.1016/j.procbio.2016.07.001

Yun, C., Islam, I., Lehew, M., & Kim, J. (2016). Assessment of Environmental and Economic Impacts Made by the Reduced Laundering of Self-cleaning Fabrics. Fibers and Polymers, 17(8), 1296–1304. https://doi.org/10.1007/s12221-016-6320-3

Zhao, H., & Lin, B. (2019). Assessing the energy productivity of China’s textile industry under carbon emission constraints. Journal of Cleaner Production, 228, 197–207. https://doi.org/10.1016/j.jclepro.2019.03.327

Zhao, J. (2011). Analysis on Green Initiative Costume Design Concept. Advanced Materials Research, 331, 97–100. https://doi.org/10.4028/www.scientific.net/amr.331.97

Zhou, Y., Yang, Z., & Tang, R. (2020). Facile and green preparation of bioactive and UV protective silk materials using the extract from red radish ( Raphanus sativus L .) through adsorption technique. Arabian Journal of Chemistry, 13(1), 3276–3285. https://doi.org/10.1016/j.arabjc.2018.11.003

Zuber, M., Adeel, S., Rehman, F., Anjum, F., Abdullah, M., & Zia, K. M. (2019). Influence of Microwave Radiation on Dyeing of Bio-mordanted Silk Fabric using Neem Bark ( Azadirachta indica ) -Based Tannin Natural Dye Influence of Microwave Radiation on Dyeing of Bio-mordanted Silk Fabric using Neem Bark ( Azadirachta indica ) -Based Tannin Natural Dye. Journal of NaturalFibers,1–13. ttps://doi.org/10.1080/15440478.2019.1576569

Downloads

Publicado

2021-04-19

Edição

Seção

Variata