Biomass and nutrient allocation as a function of stem bending of mutamba seedlings

Authors

DOI:

https://doi.org/10.5965/223811712442025811

Keywords:

avaliação indireta do estresse, técnicas de viveiro, teste de perda de eletrólitos, endurecimento de mudas

Abstract

The use of hardening or acclimatization processes in woody species seedlings has shown contradictory results in post-planting mortality. The hardening or acclimatization of woody species seedlings via mechanical treatment has resulted in differentiated nutritional allocation among plant tissues. The objective of this study was to test the effect of daily stem bending frequencies (zero, 10, 20, or 40 bends) on macronutrient allocation in Guazuma ulmifolia seedlings, using a randomized block design with five replicates of seven seedlings. The treatments tested did not show evidence of stress induction in seedlings when measured by the electrolyte leakage test in root tissues, but increased calcium and magnesium levels in the stem. The use of 10 daily stem bends resulted in an increase in nitrogen concentration in stem tissues, while phosphorus concentration increased in both the stem and roots. The imposition of 10 or 20 daily stem bends resulted in a reduction in potassium concentration in the roots, as well as an increase in calcium and magnesium levels in the stem. Due to the pioneering nature of the species and its ability to acclimatize mechanically, hardened mutamba seedlings with stem bends deserve to be tested in revegetation projects.

Downloads

Download data is not yet available.

References

AVELINO NR et al. 2021. Alocação de biomassa e indicadores de crescimento para a avaliação da qualidade de mudas de espécies florestais nativas. Ciência Florestal 31: 1733-1750.

CADORIN DA et al. 2021. Morphometric changes and post-planting growth as a response to hardening on Tabebuia roseo-alba seedlings. Floresta 51: 539-546.

CADORIN DA et al. 2015. Metil jasmonato e flexões caulinares na rustificação e crescimento inicial de mudas de Cordia trichotoma. Revista Cerne 21: 657-664.

CALIXTO JÚNIOR JT et al. 2016. Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast "Cerrado". Saudi Journal Biological Sciences 23: 434-440.

CARGNELUTTI FILHO A et al. 2018. Dimensionamento amostral para avaliação de altura e diâmetro de plantas de timbaúva. Floresta e Ambiente 25: 1-9.

CARVALHO PER. 2007. Mutamba - Guazuma ulmifolia. Colombo: Embrapa Florestas. 13p.

DRANSKI JAL et al. 2017. Manejo hídrico na rustiicação em mudas de Maytenus ilicifolia [(Schrad.) Planch.]. Biotemas 30: 45-54.

DRANSKI JAL et al. 2015. Relationship between lignin content and quality of Pinus taeda seedlings. Árvore 39: 905-913.

DURIGAN G et al. 2002. Caracterização de dois estratos da vegetação em uma área de cerrado no município de Brotas, SP, Brasil. Acta Botânica Brasílica 16: 251-262.

FURTINI NETO AE et al. 1999. Acidez do solo, crescimento e nutrição mineral de algumas espécies arbóreas, na fase de muda. Cerne 5: 1-12.

GE Y et al. 2014. Physiological and biochemical responses of Phoebe bournei seedlings to water stress and recovery. Acta Physiologiae Plantarum 36: 1241-1250.

GOMES JM & PAIVA HN. 2012. Viveiros florestais: propagação sexuada. Viçosa: Editora UFV. 116p.

GOUVEIA PAR. 2018. Therapeutic use extract of Guazuma ulmifolia Lam of Northern Brazil. Journal of Microbiology & Infectious Diseases 2: 1-8.

HEBERLE K et al. 2018. Morfometria e lignificação em função da aplicação de ácido jasmônico em mudas de ipê roxo e guajuvira. Scientia Agraria Paranaensis 17: 317-325.

HOUMANI H & CORPAS FJ. 2024. Can nutrients act as signals under abiotic stress? Plant Physiology and Biochemistry 206: 108313.

JACOBS DF & LANDIS TD. 2009. Hardening. In: DUMROESE RK et al. Nursery manual for native plants: Guide for tribal nurseries. Washington: United States Department of Agriculture, Forest Service. 217-228p.

KERBAUY GB. 2013. Fisiologia Vegetal. 2. Ed. Rio de Janeiro: Guanabara Koogan. 452p.

KOUHEN M et al. 2023. The course of mechanical stress: types, perception, and plant response. Biology 12: 217.

KOVALESKI AP & GROSSMAN JJ. 2021. Standardization of electrolyte leakage data and a novel liquid nitrogen control improve measurements of cold hardiness in woody tissue. Plant Methods 17: 17-53.

LANA MC et al. 2010. Análise química de solo e tecido vegetal: Práticas de laboratório. Cascavel: Edunioeste. 130p.

LARCHER W. 2006. Ecofisiologia Vegetal. São Carlos: RiMa. 550p.

LIMA PR et al. 2018. Estímulos químico e mecânico na rustificação de mudas de eucalipto. Ceres 65: 424-432.

LIU Z et al. 2023. Impact of mechanical stimulation on the life cycle of horticultural plant. 2023. Horticultural Plant Journal 9: 381-394.

LOPEZ D et al. 2014. Gravity sensing, a largely misunderstood trigger of plant orientated growth. Frontiers of Plant Science 5: 1-6.

MACEDO AF. 2012. Abiotic stress responses in plants: metabolism to productivity. In: AHMAD P & PRASAD MNV. Abiotic stress responses in plants: metabolism, productivity and sustainability. Ney York: Springer. 41-62p.

MARSCHNER P. 2012. Marschner’s mineral nutrition of higher plants. 3.Ed. London: Academic Press. 651p.

OLIET J et al. 2009. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New Forest 37: 313-333.

PAIVA SOBRINHO S & SIQUEIRA EG. 2008. Caracterização morfológica de frutos, sementes, plântulas e plantas jovens de Mutamba (Guazuma ulmifolia Lam. – Sterculiaceae). Revista Brasileira de Sementes 30: 114-120.

PRAHASTUTI S et al. 2020. The ethanol extract of the bastard cedar (Guazuma ulmifolia L.) as antioxidants. Pharmaciana 10: 77-88.

PUIJALON S et al. 2007. Interactive Effects of Nutrient and Mechanical Stresses on Plant Morphology. Annals of Botany 100: 1297–1305.

QI Y et al. 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation 18: e00606.

RAFI M et al. 2020. Phytochemical profile and antioxidant activity of Guazuma ulmifolia leaves extracts using different solvent extraction. Indonesian Journal of Pharmacy 31: 171-180.

RAIJ B. 1991. Fertilidade do solo e adubação. Piracicaba: Potafos. 343p.

RAMAKRISHNA A & RAVISHANKAR GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6: 1720-1731.

RIIKONEN J & LUORANEN J. 2018. Seedling production and the field performance of seedlings. Forests 9: 1-4.

SAMPATHKUMAR A et al. 2014. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 16: e01967.

SHABALA S & POTTOSIN II. 2010. Potassium and potassium-permeable channels in plant salt tolerance In: DEMIDCHIK V & MAATHUIS F. Ion channels and plant stress responses. Berlin: Springer-Verlag. 87-110p.

SHUKLA D et al. 2017. Comprehensive study of excess phosphate response reveals ethylene mediated signaling that negatively regulates plant growth and development. Scientific Reports 7: 3074.

SIGMAPLOT. 2011. Scientific Graphing Software: Version 12.0. San Rafael: Jandel Corporation.

SILVA DMB et al. 2020. Uso econômico da socio biodiversidade: propriedades terapêuticas e outros usos de Guazuma ulmifolia L., Malvaceae. Cadernos de Agroecologia 15: 2236-7934.

SINGER F. 2018. A condenação à morte dos pacientes de Aids na Venezuela. El Pais. Disponível em: https://brasil.elpais.com/brasil/ 2018/09/06/ internacional /1536258399684413.html. Acesso em: 09 fev. 2022.

SOUZA SR & FERNANDES MS 2018. Nitrogênio. In: FERNADES MS et al. Nutrição mineral de plantas. 2. Ed. Viçosa: SBCS. p.309-376.

SOUZA G et al. 2010. Respostas fotossintéticas de quatro espécies tropicais arbóreas crescidas sob condições de clareira e de sub-bosque em uma Floresta Semi-Decídua. Brazilian Journal of Botany 33: 529-538.

SOUZA PA et al. 2009. Nutritional assessment of cedar seedlings (Cedrela fissilis; Vell.) grown in a greenhouse. Cerne 15: 236-243.

TAIZ L et al. 2017. Fisiologia e Desenvolvimento Vegetal. 7. Ed. Porto Alegre: Artmed. 888p.

TRÄNKNER M et al. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiology Plantarum 163: 414–431.

VILLAR-SALVADOR P et al. 2004. Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiology 24: 1147-1155.

VOLKWEIS CR et al. 2020. Alterações morfométricas em mudas de eucalipto causadas pela frequência de flexões caulinares. Ambiência 16: 937-947.

VOLKWEIS CR et al. 2014. Efeito da tigmomorfogênese na morfometria de mudas de Maytenus ilicifolia (Schrad.) Planch. Ciência Florestal 24: 339-342.

WANG Y et al. 2021. Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology 63: 34-52.

WHITE P & KARLEY A. 2010. Potassium. In: HELL R & MENDEL RR. Cell biology of metals and nutrients. Berlin: Springer. p.199–224.

WILNER J. 1955. Results of laboratory tests for winter hardiness of woody plants by electrolyte methods. Proceedings of the American Horticultural Society 66: 93-99.

ZHANG J et al. 2014. Lodging resistance characteristics of high-yielding rice populations. Field Crops Research 161: 64–74.

Downloads

Published

12-12-2025

How to Cite

MALAVASI, Ubirajara Contro; AJALA, Michelle; LANA, Maria do Carmo; DRANSKI, João Alexandre. Biomass and nutrient allocation as a function of stem bending of mutamba seedlings. Revista de Ciências Agroveterinárias, Lages, v. 24, n. 4, p. 811–823, 2025. DOI: 10.5965/223811712442025811. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/26465. Acesso em: 19 dec. 2025.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)