Interaction of seed treatment and herbicide tank mixture in paddy rice selectivity

Authors

  • Julio Marcos Catoni Instituto Federal Catarinense, Rio do Sul, SC, Brasil.
  • Antonio Mendes de Oliveira Neto Catarinense Federal Institute
  • Cristiano Riscarolli Instituto Federal Catarinense, Rio do Sul, SC, Brasil.
  • Naiara Guerra Universidade Federal de Santa Catarina, Curitibanos, SC, Brasil.

DOI:

https://doi.org/10.5965/10.5965/223811711912020016

Keywords:

phytointoxication, Oryza sativa, pre-germinated, SCS 121 CL

Abstract

Increased phytointoxication level after herbicide tank mixtures has been frequent in field conditions, pressured by the improvement of the control spectrum and the advance of herbicide-resistant biotypes. The objective of this work was to assess the interaction of seed treatment with a commercial formulation of fungicide and insecticide with herbicide tank mixture after the application in paddy rice, in the pre-germinated seed system, in the Alto Vale do Itajaí region. To carry out the experiment in the commercial field prepared for the pre-germinated seed system, sowing SCS 121 CL cultivar. The experimental design was a block completely randomized with treatments organized in factorial design 4 x 2, with four replications. We assessed two levels seed treatment (with or without) and four herbicide treatments (without herbicide, [imazapyr + imazapic] + bentazon, [imazapyr + imazapic] + saflufenacil, and [imazapyr + imazapic] + bentazon + saflufenacil). The first spray was carried out in V2 only with the commercial mixture of [imazapyr + imazapic], and the second spray was carried out in V3 with treatments. The variables assessed were phytointoxication, number of plants per square meter, number of tillers by plant, number of panicles per square meter, number of grains per panicle, panicle weight, spikelet sterility, thousand grains weight, and grain yield. We concluded that seed treatment with a formulated mixture of insecticide and fungicide reduced the phytointoxication of saflufenacil mixing treatments. Moreover, there was numeric superiority of yield compounds and grain yield with seed treatment.

Downloads

Download data is not yet available.

References

BALARDIN RS et al. 2011. Tratamento de sementes com fungicidas e inseticidas como redutores dos efeitos do estresse hídrico em plantas de soja. Ciência Rural 41: 1120-1126.

BERTUCCI MB et al. 2019. Efficacy of fall-applied residual herbicides on weedy rice control in rice (Oryza sativa L.). Weed Technology 33: 441-447.

CAMARGO ER et al. 2011. Rice tolerance to saflufenacil in clomazone weed control program. International Journal of Agronomy. Article ID 402461. 8p.

CAMARGO ER et al. 2012. Interaction between saflufenacil and imazethapyr in red rice (Oryza spp.) and hemp sesbania (Sesbania exaltata) as affected by light intensity. Pest Management Science 68: 1010-1018.

COUNCE PA et al. 2000. A uniform, objective, and adaptative system for expressing rice development. Crop Science 40: 436-443.

DAYAN FE & WATSON SB. 2011. Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pesticide Biochemistry and Physiology 101: 182-190.

BONOW JFL et al. 2015. Seletividade do herbicida saflufenacil na cultura do arroz irrigado. In: IX Congresso Brasileiro do Arroz Irrigado. Anais... Pelotas: SOSBAI. p.896-899.

FAGAN EB et al. 2010. Efeito da aplicação de Piraclostrobina na taxa fotossintética, respiração, atividade da enzima nitrato redutase e produtividade de grãos de soja. Bragantia 69: 771-777.

FAO. 2019. FOOD AND AGRICULTURE ORGANIZATION OF UNITED NATIONS. Faostat – Crops. Disponível em: http://www.fao.org/faostat/en/#data/QC. Acesso em: 04 set. 2019.

GAO S et al. 2019. Protective responses induced by chiral 3-dichloroacetyl oxazolidine safeners in maize (Zea mays L.) and the detoxification mechanism. Molecules 24: 3060.

GEOFFROY L et al. 2002. Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pesticide Biochemistry and Physiology 72: 178-185.

GILL SS & TUTEJA N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry 48: 909-930.

GROSSMANN K et al. 2011. Saflufenacil (KixorTM): biokinetic properties and mechanism of selectivity of a new protoporphyrinogen IX oxidase inhibiting herbicide. Weed Science 59: 290-298.

HAVERROTH EJ et al. 2017. Efeito da associação de herbicidas para o controle de Sagittaria montevidensis em arroz de cultivo pré-germinado. In: Anais do X Congresso Brasileiro do Arroz Irrigado. Gramado: SOSBAI.

JABS T. 2004. Can strobilurins still deliver? Crop Protection 17: 19-20.

LIEBL RA et al. 2008. BAS 800H: A new herbicide for preplant burndown and preemergence dicot weed control. Weed Science Society of America 48: 120.

JADOSKI CJ et al. 2015. Ação fisiológica da piraclostrobina na assimilação de CO2 e na atividade de enzimas antioxidantes em plantas de feijão em diferentes tensões de água no solo. Irriga 20: 319-333.

KANUNGO M & JOSHI J. 2014. Impact of pyraclostrobin (F-500) on crop plants. Plant Science Today 3: 174-178.

KNEZEVIC SZ et al. 2010. Application timing and adjuvant type affected saflufenacil efficacy on selected broadleaf weeds. Crop Protection 29: 94-99.

KNEZEVIC SZ et al. 2009. Adjuvants influenced saflufenacil efficacy on fall-emerging weeds. Weed Technology 23: 340-345.

KÖEHLE H et al. 2003. Physiological effects of the strobilurin fungicide F 500 on plants. In: DEHNE HW et al. Modern Fungicides and Antifungal Compounds. Germany: Spring. p.61-74.

KRUSE ND et al. 2006. Estresse oxidativo em girassol (Helianthus annuus) indica sinergismo para a mistura dos herbicidas metribuzin e clomazone. Planta Daninha 24: 379-390.

LIMA AS et al. 2009. Efeito fisiológico de funcigida pyraclostrobin e tratamento de sementes na cultura do milho. Pesquisa Aplicada & Agrotecnologia 2: 113-120.

MATZENBACHER FO et al. 2014. Environmental and physiological factors that affect the efficacy of herbicides that inhibit the enzyme protoporphyrinogen oxidase: a literature review. Planta Daninha 32: 457–463.

MEROTTO JUNIOR A et al. 2010. Isolamento do gene ALS e investigação do mecanismo de resistência a herbicidas em Sagittaria montevidensis. Ciência Rural 40: 2381-2384.

MOURA DS et al. 2015. Multiple resistance of Sagittaria montevidensis biotypes to acetolactate synthase and photosystem II inhibiting herbicides. Planta Daninha 33: 779-786.

MOURA DS et al. 2016. Multiple resistant biotypes of Sagittaria montevidensis to inhibiting acetolactate synthase and photosystem II herbicides. Revista Brasileira de Herbicidas 15: 148-156.

PINHEIRO V et al. 2016. Seed treatment, soil compaction and nitrogen management affect upland rice. Pesquisa Agropecuária Tropical 46: 72-79.

SOLTANI N et al. 2009. Response of corn to preemergence and postemergence applications of saflufenacil. Weed Technology 23: 331-334.

SOSBAI. 2016. SOCIEDADE SUL-BRASILEIRA DE ARROZ IRRIGADO. XXXI Reunião Técnica da Cultura Arroz Irrigado: recomendações técnicas da pesquisa para o Sul do Brasil. Santa Maria: SOSBAI. 197p.

TAKANO HK et al. 2019. Reactive oxygen species trigger the fast action of glufosinate. Planta 249: 1837-1849.

VAN DINGENEN J et al. 2017. Strobilurins as growth-promoting compounds: how stroby regulates Arabidopsis leaf growth. Plant, Cell and Environment 40: 1748-1760.

VENANCIO WS et al. 2004. Efeitos fisiológicos de fungicidas sobre plantas. Revisão Anual de Patologia de Plantas 12: 317-341.

Published

2020-04-03

How to Cite

CATONI, Julio Marcos; OLIVEIRA NETO, Antonio Mendes de; RISCAROLLI, Cristiano; GUERRA, Naiara. Interaction of seed treatment and herbicide tank mixture in paddy rice selectivity. Revista de Ciências Agroveterinárias, Lages, v. 19, n. 1, p. 16–25, 2020. DOI: 10.5965/10.5965/223811711912020016. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/14508. Acesso em: 17 jul. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)