Selectivity and efficacy of herbicides applied to canola for weed control
DOI:
https://doi.org/10.5965/223811712222023218Keywords:
Brassica napus var. oleífera, Avena strigosa, Lolium multiflorum, Raphanus sativus, R. raphanistrumAbstract
The use of herbicides for weed control is the most used method due to its effectiveness, speed, and lower cost, but few products are registered for canola crops. In this way, the objective of this work was to evaluate the selectivity (experiment 1) and efficiency (experiment 2) of herbicides applied alone or in association in pre‑ and post-emergence of canola for weed control. The experiments were carried out in randomized blocks design, with four replications. In pre-emergence, the herbicides oxyfluorfen, pendimethalin, flumiozaxin, and trifluralin were applied, and in post-emergence, fluazifop-p-butyl, plus weeded and infested controls. Phytotoxicity and physiological characteristics were evaluated in the selectivity experiment, and the control of turnip, ryegrass, and black oat weeds were evaluated in the efficacy experiment. In both experiments, the number of siliques per plant, grains per silique, plant density, thousand-grain weight, and grain yield were determined. Oxyfluorfen applied alone or associated with fluazifop-p-butyl caused the highest phytotoxicity to the Diamond canola hybrid. The lowest phytotoxicities were observed for pendimethalin and fluazifop-p-butyl applied alone or in an association. All tested herbicides caused stress on internal CO2 concentration, transpiration, stomatal conductance, photosynthetic activity, water use efficiency, and carboxylation efficiency. Flumioxazin and fluazifop-p-butyl applied pre- and post-emergence of canola showed the best results for the crop yield components, especially higher productivity, also with the weeded control in the selectivity experiment. None of the herbicide treatments controlled turnip properly (experiment 2), and the presence of this weed negatively affected canola yield components. Fluazifop-p-butyl applied alone or in association with oxyfluorfen, pendimethalin, flumioxazin, and trifluralin showed the best controls of ryegrass and black oat.
Downloads
References
AGROFIT. 2023. Ministério da Agricultura, Pecuária e Abastecimento. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acesso em: 20 Jan. 2023.
ALTERMAN MK & JONES AP. 2003. Herbicidas: Fundamentos fisiológicos y bioquímicos del modo de acción. Santiago: Ediciones Universidad Católica del Chile. 333 p.
BALEM R et al. 2021. Controle de nabo e azevém em trigo com herbicidas pós-emergentes. Revista de Ciência e Inovação 6: 1-12.
BRANDLER D et al. 2021a. Periods of weed plant interference in canola. Communications in Plant Sciences 11: 001-008.
BRANDLER D et al. 2021b. Interference and level of economic damage of turnip in canola. Revista Agrária Acadêmica 4: 39-56.
CECHIN J et al. 2016. Resistência de biótipos de nabo ao herbicida iodosulfurom e controle alternativo. Planta Daninha 34: 151-160.
CORREIA NM & CARVALHO ADF. 2021. Seletividade de herbicidas para batata-doce. Weed Control Journal 20: e202100740.
DALASTRA GM et al. 2014. Trocas gasosas e produtividade de três cultivares de meloeiro conduzidas com um e dois frutos por planta. Bragantia 73: 365-371.
DURIGON MR et al. 2019. Competitive ability of canola hybrids resistant and susceptible to herbicides. Planta Daninha 37: 1-9.
DURIGON MR et al. 2018. Properties of the enzyme acetolactate synthase in herbicide resistant canola. Bragantia 77: 485-492.
DURIGON MR et al. 2016. Indicações de uso e boas práticas de manejo da tecnologia Clearfield em canola para as regiões Sul e Centro-Oeste. Revista Plantio Direto 152: 1-9.
FERREIRA DF. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35: 1039-1042.
GALON L et al. 2021. Controle de plantas daninhas na cultura da canola com diferentes herbicidas. Weed Control Journal 1: 02100011.
GALON L et al. 2022. Morphophysiological changes in clearfeld oilseed rape as a result of the application of ALS‑herbicides and weed competition. Journal of Plant Diseases and Protection 129: 993-1003.
GIMÉNEZ–MOOLHUYZEN et al. 2020. Photosynthesis inhibiting effects of pesticides on sweet pepper leaves. Insects 11: 69-75.
HEAP I. 2023. The International Herbicide-Resistant Weed Database. Disponível em: <http://www.weedscience.org>. Acesso em: 20 Jan. 2023.
INMET. INSTITUTO NACIONAL DE METEOROLOGIA. 2021. Dados climatológicos. Disponível em: https://bdmep. inmet.gov.br/. Acesso em: 10 out. 2021.
KAUR N et al. 2016. Weed management in sugarcane-canola intercropping systems in northern India. Field Crops Research 188: 1-9.
LOVARELLI D et al. 2020. Barley production in Spain and Italy: Environmental comparison between different cultivation practices. Science of The Total Environment 707: 135982.
MARIANI F et al. 2015. Herança da resistência de Lolium multiflorum ao iodosulfuron-methyl-sodium. Planta Daninha 33: 351-356.
MELGAREJO MA et al. 2014. Características agronômicas e teor de canola em função da época de semeadura. Revista Brasileira de Engenharia Agrícola 18: 934-938.
MEROTTO Jr A et al. 2000. Tolerância da cultivar de soja Coodetec 201 aos herbicidas inibidores de ALS. Planta Daninha 18: 93-102.
OLIVEIRA Jr. RS & INOUE MH. 2011. Seletividade de herbicidas para culturas e plantas daninhas. In: OLIVEIRA Jr. Et al. (Ed.). Biologia e manejo de plantas daninhas. Curitiba: Omnipax. p.243-262.
OLIVEIRA NETO AM et al. 2011. Seletividade de herbicidas aplicados em pré-emergência na cultura do crambe. Revista Brasileira de Herbicidas 10: 49-56.
OLIVEIRA AR et al. 2009. Controle de Commelina benghalensis, C. erecta e Tripogandra diuretica na cultura do café. Planta Daninha 27: 823-830.
OLIVER DP et al. 2016. Comparative environmental impact assessment of herbicides used on genetically modified and non-genetically modified herbicide-tolerant canola crops using two risk indicators. Science of the Total Environment 557: 754-763.
PANDOLFO CE et al. 2013. Limited occurrence of resistant radish (Raphanus sativus) to AHAS-inhibiting herbicides in Argentina. Planta Daninha 31: 657-666.
PINHEIRO C & CHAVES MM. 2011. Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany 62: 869-882.
ROBINSON MA et al. 2015. Winter wheat (Triticum aestivum L.) response to herbicides as affected by application timing and temperature. Canadian Journal of Plant Science 95: 325-333.
RODRIGUES BN & ALMEIDA FS. 2018. Guia de herbicidas 7.ed. Londrina: IAPAR. 764 p.
SANTOS G et al. 2011. Seletividade toponômica de herbicidas para a cultura do algodão. Revista Brasileira de Herbicidas 10: 95-102.
SANTOS F et al. 2018a. Aproveitamento integral do nabo forrageiro (Raphanus sativus L.) em processos de biorrefinaria. Engevista 20: 374-393.
SANTOS HG et al. 2018b. Sistema brasileiro de classificação de solos. 5.ed. Brasília: EMBRAPA. 356p.
SIDAR RS. 2019. The identification of weeds and effect of herbicides in rapeseed-mustard: A review. Journal of Medicinal Plants 7: 73-77.
SILVA FG et al. 2015. Trocas gasosas e fluorescência da clorofila em plantas de berinjela sob lâminas de irrigação. Revista brasileira de engenharia agrícola e ambiental 19: 946-952.
SBCS. 2016. Sociedade Brasileira de Ciência do Solo. Manual de adubação e calagem para os estados do Rio Grande do Sul e de Santa Catarina. 11.ed. Porto Alegre: SBCS/Núcleo Regional Sul. 376p.
STANTON RA et al. 2010. Herbicide tolerant canola systems and their impact on winter crop rotations. Field Crops Research 117: 161-166.
UMURZOKOV M et al. 2019. Alternative herbicides to manage unintentionally released transgenic canola. Weed & Turfgrass Science 8: 123-130.
VARGAS L et al. 2011. Seletividade de herbicidas para a canola PFB-2. Passo Fundo: Embrapa Trigo 1: 1-14. (Documentos Online 130). Disponível em: <https://core.ac.uk/download/pdf/15442738.pdf >. Acesso em: 20 ago. 2021.
VARGAS L et al. 2013. Dose-response curves of Lolium multiflorum biotypes resistant and susceptible to clethodim. Planta Daninha 31: 887-892.
VELINI ED et al. 1995. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD. 42p.
XAVIER E et al. 2018. Activity of antioxidant enzymes in Euphorbia heterophylla biotypes and their relation to cross resistance to ALS and Protox inhibitors. Planta Daninha 36: 1-14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Authors & Revista de Ciências Agroveterinárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors publishing in this journal are in agreement with the following terms:
a) Authors maintain the copyrights and concede to the journal the copyright for the first publication, according to Creative Commons Attribution Licence.
b) Authors have the authority to assume additional contracts with the content of the manuscript.
c) Authors may supply and distribute the manuscript published by this journal.