Damage to lemon tree caused by simulated drift of herbicides

Authors

  • Leandro Galon Universidade Federal da Fronteira Sul, Erechim, RS, Brasil.
  • Clevison Luis Giacobbo Universidade Federal da Fronteira Sul, Chapecó, SC, Brasil.
  • André Ricardo Zeist Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil.
  • Marlon Ouriques Bastiani Três Tentos Agroindustrial S.A., Dom Pedrito, RS, Brasil.
  • Doralice Lobato de Oliveira Fischer Instituto Federal do Sul, Pelotas, RS, Brasil.
  • Ketholly Nayara Henrique Domingos Universidade Federal da Fronteira Sul, Chapecó, SC, Brasil.
  • Cesar Tiago Forte Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.

DOI:

https://doi.org/10.5965/223811711932020319

Keywords:

Citrus limonium, glyphosate, clomazone

Abstract

The use of herbicides, in particular clomazone and glyphosate, applied in isolation or in a tank mix, is very common in rice, soybeans, corn and sugarcane fields and the drift of these herbicides can cause damage in sensitive species grown nearby. The purpose of this work was to evaluate the effects of the simulated drift of clomazone and glyphosate applied in an isolated way or mixed in a spray on lemon tree plants. The experiment was installed in a greenhouse in pots with a capacity of 15 L containing sieved soil and an experimental design of randomized blocks was adopted, arranged in a 3 x 5 factorial scheme, with four replications. Plants with two years of development were used. The treatments tested were, clomazone, glyphosate and both mixed, and the decreasing doses of the recommended commercial product: 100, 75, 50, 25 and 0% to simulate herbicide drift. Was evaluated variables, phytotoxicity at 14, 28, 46 and 100 days after application of treatments; plant height, crown volume, the trunk diameter of the rootstock, trunk diameter of the graft and trunk diameter at the grafting point at 0 and 100 days after application of treatments; and liquid assimilation of CO2 at 10 and 60 days after application of treatments. Among the tested herbicides, the one that presented the highest phytotoxicity and the lowest liquid assimilation of CO2 in lemon tree plants was the glyphosate + clomazone mixture. Increases in trunk diameter of the rootstock, grafting point, graft and crown volume did not show significant effects with simulated drift. The plant height presented a greater reduction with the increase of the herbicide doses, mainly glyphosate. That there are considerable losses in lemon tree plants when herbicide drift occurs, mainly by glyphosate and its mixture with clomazone.

Downloads

Download data is not yet available.

Author Biography

Leandro Galon, Universidade Federal da Fronteira Sul, Erechim, RS, Brasil.

Engenheiro Agronomo pela FAEM/UFPEl, Mestre em Fitossanidade pelo DFS/FAEM/UFPel, Doutor e Pós Doutor pelo DFT/UFV, e atual professor da área de Herbologia da UFFS.

References

BANDANA B et al. 2015. Dissipation kinetics of glyphosate in tea and tea-field under northwestern mid-hill conditions of India. Journal of Pesticide Science 40: 82-86.

CABRAL CM et al. 2017. Tolerance to the herbicide clomazone and potential for changes of forest species. Bioscience Journal 33: 897-904.

COSTA AGF et al. 2007. Effect of wind intensity, pressure and nozzles on spray drift from pre-emergence herbicide applications. Planta Daninha 25: 203-210.

COSTA NV et al. 2009. Effect of simulated glyphosate drift on the initial growth of physic nut plants. Planta Daninha 27: 1105-1110.

CUNHA JPAR. 2008. Pesticide drift simulation under different spray conditions. Ciência e Agrotecnologia 32: 1612-1621.

DRIVER KE et al. 2020. Mechanism of clomazone resistance in Leptochloa fusca spp. fasicularis to clomazone. Pesticide Biochemistry and Physiology 162: 1-5.

DUKE SO. 2018. The history and current status of glyphosate. Pest Management Science 74: 1027-1034.

DUKE SO. 2011. Glyphosate degradation in glyphosate-resistant and susceptible crops and weeds. Journal of Agricultural and Food Chemistry 59: 5835-5841.

EGAN JF et al. 2014. Herbicide drift can affect plant and arthropod communities. Agriculture, Ecosystems and Environment 185: 77-87.

FERREIRA FB et al. 2006. Consequences of simulated drift of herbicide glyphosate in flooded rice (Oryza sativa L.). Revista Brasileira de Agrociência 12: 309-312.

FORESTI ER et al. 2015. Simulação da deriva de clomazone e glyphosate em mudas de laranjeira ‘Hamlin’. Revista Brasileira de Fruticultura 37: 367-376.

FOROUZESH A et al. 2015. Classification of herbicides according to chemical family for weed resistance management strategies–an update. Weed Research 55: 334-358.

GANDOLFO MA et al. 2012. Potential for drifting of mix 2,4-D + glyphosate. Revista Brasileira de Herbicida 11: 332-338.

GIACOBBO CL et al. 2018. Simulated drift of herbicides applied alone and in tank mix in grapevine. Communications in Plant Sciences 8: 22-30.

GRAVENA R et al. 2012. Glyphosate has low toxicity to citrus plants growing in the field. Canadian Journal of Plant Science 92: 119-127.

GRAVENA R et al. 2009. Low glyphosate rates do not affect Citrus limonia (L.) Osbeck seedlings. Pest Management Science 65: 420-425.

HEMPHILL DD & MONTGOMERY ML. 1981. Response of vegetable crops to sublethal application of 2,4-D. Weed Science 29: 632-635.

IBGE. 2019. Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de Recuperação Automática – SINDRA. Disponível em: <http://www.sidra.ibge.gov.br/bda/tabela/protabl.asp?>. Acesso em: 16 dez. 2019.

MOHAPATRA S et al. 2017. Efficacy of pre-emergence herbicides for control of complex weed flora in transplanted rice. Indian Journal of Weed Science 49: 216-218.

OLIVEIRA RB et al. 2013. Potential of adjuvants to reduce drift in agricultural spraying. Engenharia Agrícola 34: 986-992.

OLIVEIRA JR. RS. 2011. Mecanismo de ação de herbicidas. In: OLIVEIRA JR. RS et al. Biologia e manejo de plantas daninhas. Curitiba: Omnipax. p.141-192.

RIBEIRO VHV et al. 2020. Morphoanatomical injuries in Pistia stratiotes L. (Araceae) as a result of exposure to clomazone in water. Anais da Academia Brasileira de Ciências 92: 1-15.

RIGOLI RP et al. 2008. Response of beetroot (Beta vulgaris) and carrot (Daucus carota) to simulated glyphosate and clomazone drift. Planta daninha 26: 451-456.

RODRIGUES BN & ALMEIDA FS. 2018. Guia de herbicidas. 7.ed. Londrina: Edição dos autores. 764p.

RODRIGUES EB et al. 2015. Drift of glyphosate application using backpack sprayers. Revista Brasileira de Engenharia Agrícola e Ambiental 19: 1012-1017.

RONCHI CP et al. 2005. Effect of 2,4- dichlorophenoxyacetic acid applied as a herbicide on fruit shedding and coffee yield. Weed Research 45: 41-47.

SANTOS HG et al. 2013. Sistema Brasileiro de Classificação de Solos. 3.ed. Brasília: Embrapa. 353p.

SILVA LQ et al. 2016. Modificações fisiológicas em folhas de pequi (Caryocar brasiliense) causadas pela aplicação de glyphosate. Revista Brasileira de Herbicidas 15: 184-194.

SILVA MM et al. 2018. Intoxication and physiological aspects of forage plants and weeds submitted to clomazone atmospheric waste. Planta daninha 36: 1-11.

SBCPD. 1995. Sociedade Brasileira da Ciência das Plantas Daninhas. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD. 42p.

TIMOSSI PC & ALVES PLCA. 2001. Effects of clomazone drift, sprayed alone or in mixture with ametryn, on the productive characteristics of hamlin orange. Planta Daninha 19: 295-304.

WAGNER JR. A et al. 2008. Drift Simulation of glyphosate commercial formulations on yellow passion fruit growth. Planta Daninha 26: 677-683.

Downloads

Published

2020-09-30

How to Cite

GALON, Leandro; GIACOBBO, Clevison Luis; ZEIST, André Ricardo; BASTIANI, Marlon Ouriques; FISCHER, Doralice Lobato de Oliveira; DOMINGOS, Ketholly Nayara Henrique; FORTE, Cesar Tiago. Damage to lemon tree caused by simulated drift of herbicides. Revista de Ciências Agroveterinárias, Lages, v. 19, n. 3, p. 319–328, 2020. DOI: 10.5965/223811711932020319. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/16804. Acesso em: 22 dec. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)