Ácido salicílico como atenuador do déficit hídrico em canola

Autores

DOI:

https://doi.org/10.5965/223811712222023234

Palavras-chave:

Brassica napus L., Estresse hídrico, Regulador de crescimento

Resumo

A canola enfrenta dificuldades em seu cultivo, tais como a ocorrência de períodos de escassez hídrica. Uma alternativa para atenuar estas adversidades é a aplicação de reguladores de crescimento vegetal. Diante disso, o objetivo do trabalho foi avaliar a aplicação de ácido salicílico no desenvolvimento inicial da cultura da canola submetida a déficit hídrico. O experimento foi conduzido em casa de vegetação, no delineamento experimental de blocos casualizados em esquema fatorial 5x2, composto por cinco doses de ácido salicílico (0; 0,5; 1,0; 1,5 e 2,0 mM L-1) e dois regimes hídricos, com e sem déficit hídrico (25% e 80% da capacidade de vaso), com quatro repetições. As variáveis analisadas foram injúrias visuais, altura de plantas, teor de clorofila e massa seca da parte aérea. A aplicação de diferentes doses de ácido salicílico não apresentou diferenças significativas em relação à não aplicação, para as variáveis analisadas. O déficit hídrico resultou em maior porcentagem de injúrias, menor altura e massa seca de plantas, indicando a ocorrência de estresse à cultura. A aplicação de ácido salicílico não atenuou os efeitos do déficit hídrico, assim como não demonstrou efeitos benéficos no desenvolvimento das plantas.

Downloads

Não há dados estatísticos.

Referências

ALVAREZ CA et al. 2014. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

ANGELOTTI-MENDONÇA J et al. 2016. Canola (Brassica napus L.). Piracicaba: ESALQ. 32 p.

ANVISA. 2019. Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira. 6.ed. Brasília: ANVISA. 903 p.

ARIF Y et al. 2020. Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environmental And Experimental Botany 175: 1-70.

BIANCHI L et al. 2016. Adaptação das plantas ao déficit hídrico. Acta Iguazu 5: 15-32.

CARVALHO M et al. 2017. Cowpea: a legume crop for a challenging environment. Journal of The Science of Food And Agriculture 97: 4273-4284.

CASAROLI D & LIER Q de JV. 2008. Critérios para determinação da capacidade de vaso. Revista Brasileira de Ciência do Solo 32: 59-66.

CETIOM. 1992. Centre Technique Interprofessionnel des Oléagineux Métropolitains. La cultura du colza d’hiver: Guide cultural 1991/1992. Paris: CETIOM. 33 p.

CHMIELEWSKA A et al. 2021. Canola/rapeseed protein – nutritional value, functionality and food application: a review. Critical Reviews in Food Science and Nutrition 61: 1-21.

CONAB. 2022. Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de Grãos 2021/2022 – 8º levantamento. Brasília: Conab. Disponível em: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. Acesso em: 03 jun 2022.

DIAS RC et al. 2017. Ácido salicílico como atenuador de fitotoxicidade causada pelo flumioxazin na cultura do trigo. Revista de Ciências Agrárias 60: 152-157.

DIAS RC et al. 2019. Ácido salicílico e acibenzolar-S-methyl como atenuadores de fitointoxicação causada pelo chlorimuron-ethyl na cultura da soja. Revista de ciências agrárias 42: 430-439.

DIAS JPT (org.). 2020. Usos e aplicações de reguladores vegetais. Belo Horizonte: UEMG. 142 p.

ECCO M et al. 2014. Respostas biométricas em plantas jovens de cana-de-açúcar submetidas ao estresse hídrico e ao alumínio. Comunicata Scientiae 5: 59-67.

EL SABAGH A et al. 2019. Effects of drought stress on the quality of major oilseed crops: implications and possible mitigation strategies – a review. Applied Ecology and Environmental Research 17: 4019-4043.

FARHANGI-ABRIZ S et al. 2018. Salicylic acid but not jasmonic acid improved canola root response to salinity stress. Rhizosphere 9: 69-71.

FURTADO BN et al. 2020. A importância do ácido salicílico na mitigação do déficit hídrico em plantas de cafeeiro. Agri-Environmental Sciences 6: 1-12.

GOMES CA et al. 2018. Aplicação de ácido salicílico como atenuador dos efeitos de déficit hídrico no milho. The Journal Of Engineering And Exact Sciences 4: 359-363.

KERBAUY GB. 2019. Fisiologia vegetal. Rio de Janeiro: Guanabara Koogan. 420 p.

KLESSIG DF et al. 2016. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals. Frontiers In Immunology 7: 1-10.

LA VH et al. 2019a. Characterization of salicylic acid-mediated modulation of the drought stress responses: reactive oxygen species, proline, and redox state in Brassica napus. Environmental And Experimental Botany 157: 1-10.

LA VH et al. 2019b. Antagonistic shifting from abscisic acid- to salicylic acid-mediated sucrose accumulation contributes to drought tolerance in Brassica napus. Environmental And Experimental Botany 162: 38-47.

LOPES MFQ et al. 2019. Crescimento de Erythrina velutina willd. submetida a estresse salino e aplicação de ácido salicílico. Colloquium Agrariae 15: 31-38.

MO KOO Y et al. 2020. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathology Journal 36: 1-10.

NAZAR R. et al. 2015. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior 10: 1-10.

NOVÁKOVÁ M et al. 2014. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum – Reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiology And Biochemistry 80: 308-317.

PEREIRA AC et al. 2019. Aspectos produtivos e eficiência no uso da água em cultivares de canola irrigada. Cultura Agronômica: Revista de Ciências Agronômicas 28: 166-178.

PRIMAK TK & LIMA CSM. 2017. Ácido salicílico nas características agronômicas e físico-químicas de couve folhas. Revista Científica Eletrônica de Agronomia 1: 1-14.

RODRIGUES JD & FIOREZE SL. 2015. Reguladores são, para muitos cultivos, indispensáveis ao alcance de bons níveis. Visão Agrícola 13: 35-39.

SANTOS CC et al. 2022. Salicylic acid alleviates the water stress on photochemical apparatus and quality of Schinus terebinthifolia seedlings. Revista Brasileira de Engenharia Agrícola e Ambiental 26: 747-752.

SANTOS HG et al. 2018. Sistema Brasileiro de Classificação de Solos. 5.ed. Brasília: Embrapa. 365 p.

SANTOS JC et al. 2020. Ácido salicílico como mitigador dos efeitos do estresse hídrico no potencial fisiológico e crescimento inicial em Vigna unguiculata (L.) Walp. In: Coletânea a Conferência da Terra: línguas, ritos e protagonismos nos territórios indígenas: planejamento ambiental, recursos hídricos e patrimônio cultural. Tomo III. Boa Vista: UFPR. p.139.

SANTOS MRR et al. 2019. Indução de tolerância ao estresse salino em cana-de-açúcar mediante priming com ácido salicílico. Agrarian Academy 6: 186-196.

SBCPD. 1995. Sociedade Brasileira da Ciência das Plantas Daninhas. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD. 42p.

SBCS. 2016. Sociedade Brasileira de Ciência do Solo. Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. Viçosa: Comissão de Química e Fertilidade do Solo. 376 p.

SELEIMAN MF et al. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10: 259.

SILVA AAR da et al. 2020. Salicylic acid as an attenuator of salt stress in soursop. Revista Caatinga 33: 1092-1101.

TAIZ L et al. 2017. Fisiologia e Desenvolvimento Vegetal. 6.ed. Porto Alegre: Artmed. 888 p.

VAN BUTSELAAR T & VAN DEN ACKERVEKEN G. 2020. Salicylic Acid Steers the Growth–Immunity Tradeoff. Trends in Plant Science 25: 566-576.

ZAID A et al. 2019. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicology and Environmental Safety 180: 575-587.

Downloads

Publicado

2023-05-31

Como Citar

CARDOSO, Bruna Staruck; ROSA, Eliete de Fátima Ferreira da; KASEKER, Jéssica Fernandes; NOHATTO, Marcos André; LUZ, Steffani da. Ácido salicílico como atenuador do déficit hídrico em canola. Revista de Ciências Agroveterinárias, Lages, v. 22, n. 2, p. 234–241, 2023. DOI: 10.5965/223811712222023234. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/22410. Acesso em: 14 abr. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Plantas e Produtos Derivados

Artigos mais lidos pelo mesmo(s) autor(es)