Produção de tubérculos de batata-semente sob efeito de Trichoderma sp. e rizobactérias em casa de vegetação

Autores

DOI:

https://doi.org/10.5965/223811712142022419

Palavras-chave:

Trichoderma, Azotobacter, Bacillus, batata para processamento, bactérias , fungos, tubérculos

Resumo

A batata (Solanum tuberosum L.) é uma das principais culturas da região andina e devido aos aspectos ambientais, o uso de agentes de biocontrole é considerado uma forma segura de produzir tubérculos de batata-semente. O objetivo do trabalho foi avaliar a inoculação de batata com Trichoderma sp. como matriz e rizobactérias Bacillus simplex e Azotobacter sp. sobre o crescimento de mudas de batata provenientes de cultivo in vitro, para produção de tubérculos-semente em casa de vegetação. A inoculação dos microrganismos foi realizada em vasos, utilizando-se cinco genótipos de batata para processamento. Os tratamentos de inoculação foram: testemunha, Trichoderma sp., Trichoderma sp. + Azotobacter sp., Trichoderma sp. + B.simplex, Trichoderma sp. + B.simplex + Azotobacter sp. Os genótipos de batata foram cv. Única (CIP392797.22), cv. Bicentenaria, os clones avançados CIP396311.1, CIP399101.1, e o clone experimental UH-9 da Universidade Nacional José Faustino Sánchez Carrión. O delineamento foi inteiramente casualizado, em esquema fatorial e as comparações entre os tratamentos foram feitas com p<0,05. Todos os tratamentos com inoculantes excederam o controle em número e peso de tubérculos por planta, bem como em tamanho de tubérculo. Inoculações de Trichoderma sp. sozinho ou com Azotobacter sp. aumento da altura das plantas, número de folhas por planta e uniformidade vegetativa; inoculações com o Trichoderma sp. + B.simplex + Azotobacter sp. consorcio, melhorou a massa seca da folhagem, número de brotações por planta e vigor vegetativo. Houve interações significativas entre genótipos de batata e tratamentos inoculantes para uniformidade e vigor vegetativo, e para a massa seca da folhagem. Coinoculação com Trichoderma sp. e algumas cepas bacterianas promovem o crescimento de mudas de batata in vitro, aumentando o tamanho e o peso dos tubérculos-semente e da biomassa vegetal, indicando que existe inter-relação entre fungos e bactérias que influenciam a produção de batata em casa de vegetação.

Downloads

Não há dados estatísticos.

Referências

ALOO BN et al. 2019. Rhizobacteria-Based Technology for Sustainable Cropping of Potato (Solanum tuberosum L.). Potato Research 62: 1-21.

BALZARINI MG et al. 2014. Infostat. Manual del Usuario. Córdoba, Argentina:Editorial Brujas. 334p.

BHERING LL et al. 2008. Alternative methodology for Scott-Knott test. Crop Breeding and Applied Biotechnology 8: 9-16.

BONIERBALE MW et al. 2010. Procedimientos para pruebas de evaluación estándar de clones avanzados de papa: Guia para cooperadores internacionales. Lima: Centro Internacional de la Papa (CIP).

BRUSSAARD L et al. 2007. Soil biodiversity for agricultural sustainability. Agriculture, ecosystems & environment 121: 233-244.

BUKHAT S et al. 2020. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research 238: 126486.

CALVO P et al. 2010. Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics. Brazilian Journal of Microbiology 41: 899-906.

CONTINA JB et al. 2017. Use of GFP-tagged Trichoderma harzianum as a tool to study the biological control of the potato cyst nematode Globodera pallida. Applied Soil Ecology 115: 31-37.

CONTRERAS-LIZA SE et al. 2019. Sustainability of Potato Farms and Use of Microbial Inoculants in the Central Coast of Peru. In: ZÚÑIGA-DÁVILA D et al. (Eds) MICROBIAL PROBIOTICS FOR AGRICULTURAL SYSTEMS. SUSTAINABILITY IN PLANT AND CROP PROTECTION. Berlim: Springer. p.213-226

DAS HK 2019. Azotobacter as biofertilizer. Advances in Applied Microbiology 108: 1-43.

DE PALMA M et al. 2021. Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato. Environmental and Experimental Botany 190: 104588.

DOUDS DD et al. 2007. Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biological Agriculture & Horticulture 25: 67-78.

DUFFY EM & CASSELLS AC. 2000. The effect of inoculation of potato (Solanum tuberosum L.) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution. Applied Soil Ecology 15: 137-144.

EKIN Z. 2019. Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture. Sustainability 11: 3417.

EL-SHENNAWY MZ et al. 2016. Efecto de la bacteria Bacillus subtilis y el hongo micorrízico arbuscular Glomus fasciculatum en la fertilización fosfórica en el cultivo de la papa (Solanum tuberosum ssp. andigena). Revista Latinoamericana de la Papa 16: 250-269.

FIERS M et al. 2012. Potato soil-borne diseases. A review. Agronomy for Sustainable Development 32: 93-132.

JNAWALI AD et al. 2015. Role of Azotobacter in Soil Fertility and Sustainability - a review. Advances in Plants & Agriculture Research 2: 250-253.

KOSTENKO MY et al. 2020. Studying the influence of treating potato seed tubers with hot fog of protective-stimulating preparations. Conference Series: Earth and Environmental Science 488: 012024.

ELSHERBINY EA et al. 2020. Trichoderma volatile organic compounds as a biofumigation tool against late blight pathogen Phytophthora infestans in postharvest potato tubers. Journal of Agricultural and Food Chemistry 68: 8163-8171.

GHYSELINCK J et al. 2013. Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Systematic and Applied Microbiology 36: 116-127.

HARMAN GE. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190-194.

HIDALGO OA et al. 2009. Diagnostic of seed potato systems in Bolivia, Ecuador and Peru: focusing on native varieties. In:15th International Society for Tropical Root Crops. Tropical Roots and Tubers in a Changing Climate: A Critical Opportunity for the World. Lima: International Potato Center.

ISLAM MR et al. 2021. Plant growth–promoting rhizobacteria controlling late blight pathogen, Phytophthora infestans. New and Future Developments in Microbial Biotechnology and Bioengineering 2021: 105-124.

KENNEDY AC & SMITH KL. 1995. Soil microbial diversity and the sustainability of agricultural soils. In: COLLINS HP et al. (Eds). THE SIGNIFICANCE AND REGULATION OF SOIL BIODIVERSITY. Dordrecht: Springer. p.75-86.

KHAYI S et al. 2015. Draft genome sequences of the three Pectobacterium-antagonistic bacteria Pseudomonas brassicacearum PP1-210F and PA1G7 and Bacillus simplex BA2H3. Genome Announcements 3: e01497-14.

MAIN G & FRANCO J. 2016. Efecto de la bacteria Bacillus subtilis y el hongo Micorrizico Arbuscular Glomus fasciculatum en la fertilización fosfórica en el cultivo de la papa (Solanum tuberosum ssp. andigena). Revista Latinoamericana de la Papa 16: 250-269.

MHATRE PH et al. 2019. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and Agricultural Biotechnology 17: 119-128.

MUSHTAQ Z et al. 2021. The interactive approach of rhizobacteria and l-tryptophan on growth, physiology, tuber characteristics, and iron concentration of potato (Solanum tuberosum L.). Journal of Plant Growth Regulation 1-8.

OSWALD A et al. 2010. Evaluating soil rhizobacteria for their ability to enhance plant growth and tuber yield in potato. Annals of Applied Biology 157: 259-271.

PAL G et al. 2021. Application of bacterial biostimulants in promoting growth and disease prevention in crop plants. Biostimulants for Crops From Seed Germination to Plant Development 2021: 393-410.

POVEDA J. 2021. Trichoderma as biocontrol agent against pests: new uses for a mycoparasite. Biological Control 159: 104634.

SESSITSCH A & MITTER B. 2015. 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microbial Biotechnology 8: 32-33.

SUSIANA P et al. 2018. The resistance of potatoes by application of Trichoderma viride antagonists fungus. In: E3S WEB OF CONFERENCES. Semarang: EDP Sciences. p. 06014.

THOMAS-SHARMA S et al. 2016. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology 65: 3-16.

VELIVELLI S L et al. 2014. The role of microbial inoculants in integrated crop management systems. Potato Research 57: 291-309.

VINALE F et al. 2013. Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 347: 123-129.

WANG Z et al. 2019. A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield. Computational and structural biotechnology journal 17: 645-653.

YANG G et al. 2018. How soil biota drives ecosystem stability. Trends in Plant Science 23: 1057-1067.

Downloads

Publicado

2022-12-12

Como Citar

CONTRERAS-LIZA, Sergio Eduardo; RAMÍREZ, Rodrigo Jesus Mauricio; OLIVAS, Dionicio Belisario Luis. Produção de tubérculos de batata-semente sob efeito de Trichoderma sp. e rizobactérias em casa de vegetação. Revista de Ciências Agroveterinárias, Lages, v. 21, n. 4, p. 419–427, 2022. DOI: 10.5965/223811712142022419. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/22152. Acesso em: 21 nov. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Plantas e Produtos Derivados