Redes Neurais Artificiais na estimação de variáveis biométricas de mudas de espécies florestais produzidas em diferentes substratos
DOI:
https://doi.org/10.5965/223811711812019047Palavras-chave:
recuperação de áreas degradadas, inteligência artificial, substratos orgânicosResumo
O objetivo do trabalho foi avaliar o crescimento em diâmetro do coleto e altura, e a produção de matéria seca total de mudas de Myracrodruon urundeuva, Jacaranda brasiliana e Mimosa caesalpiniaefolia. Concomitantemente, desenvolveu-se uma Rede Neural Artificial (RNA) do tipo Multilayer Perceptron que seria capaz de estimar a H e a MST das mudas das espécies estudadas. As mudas foram cultivadas em ambiente protegido com 50% de sombra. Assim, os tratamentos foram considerados com cinco proporções do material orgânico (0, 20, 40, 60 e 80% v/v) na composição do substrato final (solo da área desertificada). Aos 120 dias após a semeadura, as mudas foram coletadas para determinação das variáveis biométricas. A rede MLP foi utilizada empregando-se o algoritmo de treinamento Levenberg-Marquardat. As variáveis utilizadas como entrada da MLP para a estimação da altura e massa seca das mudas foram: diâmetro do coleto, diâmetro mínimo, médio e máximo do coleto, as espécies e fontes de resíduos orgânicos (esterco bovino, esterco caprino e palha de arroz), totalizando dez entradas. Foi utilizada a função de ativação tangente hiperbólica. Como resultados, recomenda-se a proporção 80:20% (esterco bovino e/ou esterco caprino:solo da área degradada) ao substrato de cultivo para o crescimento das mudas das espécies. A adição de doses de esterco bovino e esterco caprino influenciaram o DC do Jacaranda brasiliana, sendo constatado o efeito linear crescente com valor estimado de 2,66 mm planta-1. Para a H a adição de esterco bovino e caprino influenciou no crescimento das mudas de Myracrodruon urundeuva. A produção de MST das mudas das três espécies foi igualmente distribuída em função das proporções crescentes de resíduo orgânico incorporado ao substrato de cultivo. O uso da Rede Neural Artificial do tipo Multilayer Perceptron mostrou-se eficiente para a estimação da altura e da massa total seca das mudas das espécies estudadas.
Downloads
Referências
ARAÚJO EF et al. 2017. Crescimento e qualidade de mudas de paricá produzidas em substratos à base de resíduos orgânicos. Nativa 5: 16-23.
ASHRAF MI et al. 2015. A novel modelling approach for predicting forest growth and yield under climate change. PloS one 10: 1-18.
BINOTI MLMS et al. 2013. Aplicação de redes neurais artificiais para estimação da altura de povoamentos equiâneos de eucalipto. Revista Árvore 37: 639-645.
BINOTI MLMS et al. 2014. Redes neurais artificiais para estimação do volume de árvores. Revista Árvore 38: 283-288.
BINOTI MLMS et al. 2015. Prognose em nível de povoamento de clones de eucalipto empregando redes neurais artificiais. Cerne 21: 97-105.
BRAGA AP et al. 2007. Redes neurais artificiais: teoria e aplicações. 2.ed. Rio de Janeiro: LTC. 248p.
BRASIL. 2010. Política nacional de resíduos sólidos, Lei 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos. DOU 3/10/2010. Seção 1. p.3.
CABACINHA CD & LAFETÁ BO 2017. Floristic diversity and equitability in forest fragments using artificial neural networks. Ciência Florestal 27: 143-152.
CABREIRA GV et al. 2017. Biossólido como componente de substrato para produção de mudas florestais. Floresta 47: 165-176.
CARNEIRO JGA. 1995. Produção e controle de qualidade de mudas florestais. 1.ed. Curitiba: UFPR. 451p.
CRUZ CAF et al. 2006. Efeito da adubação nitrogenada na produção de mudas de Sete-Cascas (Samanea inopinata (Harms) Ducke). Revista Árvore 30: 537-546.
CRUZ CAF et al. 2011. Efeito de macronutrientes sobre o crescimento e qualidade de mudas de canafístula cultivadas em Latossolo Vermelho-Amarelo distrófico. Revista Árvore 35: 983-995.
DONAGEMA GK et al. 2011. Manual de métodos de análise do solo. 2.ed. Rio de Janeiro: Embrapa Solos. 225p.
FERNANDES MM et al. 2014. Aspectos biológicos e espécies potenciais para restauração ecológica de áreas em desertificação no Sul do Piauí - Brasil. Revista Verde de Agroecologia e Desenvolvimento Sustentável 9: 6-13.
FERREIRA JCB et al. 2014. Altura de mudas de Tibouchina granulosa Cogn. (melastomataceae) estimada por redes neurais artificiais. Revista da Sociedade Brasileira de Arborização Urbana 9: 151-160.
GASPARIN E et al. 2014. Influência do substrato e do volume de recipiente na qualidade das mudas de Cabralea canjerana (Vell.) Mart. em viveiro e no campo. Ciência Florestal 24: 553-563.
GOMES JM & PAIVA HN. 2012. Viveiros florestais: propagação sexuada. Viçosa: UFV. 116p.
HAYKIN S. 2001. Redes neurais: princípios e prática. 2.ed. Porto Alegre: Bookman. 900p.
LARCHER W. 2000. Ecofisiologia vegetal. 1.ed. São Carlos: RIMA Artes e Textos. 532p.
LEITE HG et al. 2011. Estimation of inside-bark diameter and heart wood diameter for Tectona grandis Linn. trees using artificial neural networks. European Journal of Forest Research 130: 263-269.
LUSTOSA FILHO JF et al. 2015. Influence of organic substrates on growth and nutrient contents of jatobá (Hymenaea stigonocarpa). African Journal of Agricultural Research 10: 2544-2552.
MAEDA EE et al. 2009. Predicting forest fire in the Brazilian Amazon using MODIS imagery and artificial neural networks. International Journal of Applied Earth Observation and Geoinformation 11: 265-272.
NUNES MH & GÖRGENS EB. 2016. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil. PloS one 11: 1-16.
RECKNAGEL F. 2001. Applications of machine learning to ecological modelling. Ecological Modelling 146: 303-310.
SILVA MLM et al. 2009. Ajuste do modelo de Schumacher e Hall e aplicação de redes neurais artificiais para estimar volume de árvores de eucalipto. Revista Árvore 33: 1133-1139.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2019 Revista de Ciências Agroveterinárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os autores que publicam nesta revista estão de acordo com os seguintes termos:
a) Os autores mantêm os direitos autorais e concedem à revista os direitos autorais da primeira publicação, de acordo com a Creative Commons Attribution Licence. Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição BY.
b) Autores têm autoridade para assumir contratos adicionais com o conteúdo do manuscrito.
c) Os autores podem fornecer e distribuir o manuscrito publicado por esta revista.