Gibberellic acid in the ‘Cabernet Sauvignon’ grape: effects on grape cluster morphology and wine quality

Authors

DOI:

https://doi.org/10.5965/223811712242023537

Keywords:

tannins, growth regulator, berry

Abstract

‘Cabernet Sauvignon’ is a commonly produced and consumed variety of grapes in Brazil, although late sprouting and flowering negatively affect wine production, hindering the production of elegant and balanced wines, especially in high-altitude regions of Santa Catarina. Therefore, this study sought to evaluate the effects of gibberellic acid (GA3) on reducing and eliminating ‘Cabernet Sauvignon’ grape berry seeds and evaluate the physicochemical parameters of the wine produced in Serra Catarinense. The experiments were conducted in a commercial vineyard. The treatments were 0.0, 40.0, and 80.0 mg L-1 of GA3 in the 2019/20 season and 0.0, 20.0, and 40.0 mg L-1 of GA3 in the 2020/21 season. The applications were performed in full bloom. The characteristics evaluated were cluster weight, berry diameter, berry mass, number of seeds per berry, seed mass, peel:pulp ratio, cluster length, cluster compaction index, rachis mass, and berries per cluster. In both harvests, the zero dose of GA3 was related to greater cluster compaction, berry and cluster mass, and seeds per berry. In the 2019/20 harvest, 80 mg L-1 of GA3 was correlated to must total soluble sugar, wine acidity, must acidity, color parameter at 520 nm, and color intensity. In the last harvest, the color parameters were more correlated with the highest GA3 dose, showing that this growth regulator increased free anthocyanins and total polyphenols. Moreover, 20–80 mg L-1 of GA3 reduced the number and size of seeds but increased the tannin content in one harvest. Bunch compaction, cluster weight, diameter, and berry weight were reduced using GA3. Lastly, 20 and 40 mg L-1 of GA3 increased the total polyphenols and monomeric anthocyanins in the wine.

Downloads

Download data is not yet available.

Author Biographies

Gabriela Zocche Pless , University of Leon

Winemaker at Leone Di Venezia Winery; Graduate of the Higher Technology Course in Viticulture and Enology – IFSC Urupema.

Thiago Moreira Monteiro, Instituto Federal de Santa Catarina

.

Giovani Furini, Instituto Federal de Santa Catarina

.

Milena de Souza Tomaz, Instituto Federal de Santa Catarina

.

Leonam Macedo da Torre, Instituto Federal de Santa Catarin

.

Carolina Pretto Panceri, Instituto Federal de Santa Catarina

.

Rogério de Oliveira Anese, Instituto Federal de Santa Catarina

.

References

BINDON KA et al. 2010. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification. Journal of Agricultural and Food Chemistry 58: 10736–10746.

BOWERS JE & MEREDITH CP. 1997. The parentage of a classic wine grape, Cabernet Sauvignon. Nature Genetics 16: 84–87.

BRASIL. 2018. Instrução Normativa N° 14, de 8 de fevereiro de 2018. Estabelecer a complementação dos padrões de identidade e qualidade do vinho e derivados da uva e do vinho. Brasília: Diário Oficial da União.

CHENG C et al. 2013. Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS One. 5: e80044.

CHIAROTTI F et al. 2011. Melhoria da qualidade de uva 'Bordô' para produção de vinho e suco de uva. Revista Brasileira de Fruticultura Vol esp: 618-624.

EMBRAPA. 2004. Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Solos do Estado de Santa Catarina. Rio de Janeiro: Embrapa Solos. 726p. (Boletim de Pesquisa e Desenvolvimento 46)

FALCÃO LD et al. 2007. A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C13-norisoprenoids, and the sensory profile of Brazilian Cabernet Sauvignon wines. Journal of Agricultural and Food Chemistry 55: 3605-3612.

FELIPPETO J et al. 2016. Maturação e composição das uvas Cabernet Sauvignon e Merlot produzidas na região de São Joaquim, SC. Agropecuária Catarinense 29: 74-79.

FERREIRA DF. 2014. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia 38: 109-112.

GAO XT et al. 2020. Effects of gibberellic acid (GA3) application before anthesis on rachis elongation and berry quality and aroma and flavour compounds in Vitis vinifera L. ‘Cabernet Franc’ and ‘Cabernet Sauvignon’ grapes. Journal of the Science of Food and Agriculture 100: 3729-3740.

GIANFAGNA T. 1995. Natural and synthetic growth regulators and their use in horticultural and agronomic crops. In: DAVIES PJ. (Ed.). Plant hormones: physiology, biochemistry and molecular biology. Dordrecht: Kluwer Academic Publisher. p.751-773.

GIUSTI T & WROLSTAD RE. 2001. Anthocyanins: Characterization and measurement with UV–visible spectroscopy, F1.2.1–13. In: WROLSTAD RE. (Ed.) Current protocols in food analytical chemistry. New York: JohnWiley & Sons Inc.

GLORIES Y. 1984. La coleur des vins rouges. Connaissance Vigne Vin 18: 253-271.

KENNEDY JA. 2008. Grape and wine phenolics: Observations and recent findings. Ciência Investigação Agraria 35: 107-120.

LORENZ DH et al. 1995. Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) - Codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research 1: 100-103.

McRAE JM & KENNEDY JA. 2011. Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research. Molecules 16: 2348-2364.

OIV. 2020. International Organisation of Vine and Wine. Compendium of International Methods of Analysis. Disponível em: oiv.int/public/medias/7372/oiv-compendium-volume-1-2020.pdf. Acesso em: 05 dez. 2020.

OKAMOTO G & MIURA K. 2005. Effect of pre-bloom GA application on pollen tube growth in cv. Delaware grape pistils 44: 157 – 159.

PEEL MC et al. 2007. Updated world mapof the Koppen-Geiger climate classification. Hydology Earth Systemic Science 11: 663-1644.

RIENTH M et al. 2021. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Frontiers in Plant Science 12: 634258.

RIZZON LA & MIELE A. 2002. Avaliação da cv. Cabernet Sauvignon para elaboração de vinho tinto. Ciência e Tecnologia de Alimentos 22: 192-198.

RIZZON LA. 2010. Metodologia para análise de vinho. Brasília: Embrapa. Informação Tecnológica.

ROBERTO SR et al. 2005. Caracterização da fenologia e exigência térmica (graus-dias) para a uva 'Cabernet Sauvignon' em zona subtropical. Acta Scientiarum Agronomy 27: 183-187.

SANTOLALLA MP & ESCOBEDO J. 2018. Alargamiento del raquis del racimo y modificación de algunas características de los frutos con aplicaciones de ácido giberélico en vid ‘Red Globe’ (Vitis vinifera). Anales Científicos 79: 436 – 442.

SILVA PS et al. 2018. Effects of Gibberellic acid (GA3) on reduction of rot disease and physico-chemical quality of 'Pinot Noir' grape. Australian Journal of Crop Science 12: 1363-1369.

SILVA PS et al. 2019. Gibberellic acid reduces clusters rot of ‘Sauvignon Blanc’ grapes. Revista Brasileira de Fruticultura 41: e-486

SINGLETON VL & ROSSI JA. 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144–158.

TAIZ L & ZEIGER E. 2013. Fisiologia vegetal. 5.ed. Porto Alegre: Artemed.

TELLO J & IBÁÑEZ J. 2014. Evaluation of indexes for the quantitative and objective estimation of grapevine bunch compactness. Vitis 53: 9–16.

TESZLÁK P et al. 2005. Influence of grapevine flower treatment with gibberellic acid (GA3) on polyphenol content of Vitis vinifera L. wine. Analytica Chimica Acta 543: 275–281.

TYAGI K et al. 2021. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research 8:15p.

TYAGI K et al. 2022. Effects of gibberellin and cytokinin on phenolic and volatile composition of Sangiovese grapes. Scientia Horticulturae 295: 110860.

WURZ DA et al. 2019. Influência da época do manejo da desfolha na evolução da maturação da videira ‘Cabernet Sauvignon’ cultivada em região de elevada altitude de Santa Catarina. Journal of Agronomic Sciences 8: 41-50.

Downloads

Published

2023-12-29

How to Cite

PLESS , Gabriela Zocche; MONTEIRO, Thiago Moreira; FURINI, Giovani; TOMAZ, Milena de Souza; TORRE, Leonam Macedo da; PANCERI, Carolina Pretto; ANESE, Rogério de Oliveira. Gibberellic acid in the ‘Cabernet Sauvignon’ grape: effects on grape cluster morphology and wine quality. Revista de Ciências Agroveterinárias, Lages, v. 22, n. 4, p. 537–545, 2023. DOI: 10.5965/223811712242023537. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/23857. Acesso em: 12 may. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)