Selection of tolerant species for contaminated soil phytemedication using imazapic

Authors

  • Simonny Montthiel Araújo Vasconcelo Instituto Federal Goiano - Campus de Rio Verde
  • Adriano Jakelaitis Instituto Federal Goiano - Campus de Rio Verde http://orcid.org/0000-0003-0093-9846
  • Mailon Lucas Meurer Costa Instituto Federal Goiano - Campus de Rio Verde
  • Romário Rodrigues Cunha de Oliveira Instituto Federal Goiano - Campus de Rio Verde
  • Vanessa Silva Santos Instituto Federal Goiano - Campus de Rio Verde

DOI:

https://doi.org/10.5965/223811711922020149

Keywords:

imidazolinonas, metabolism, phytointoxication

Abstract

Imazapic can cause visual intoxication in sensitive crops sown in rotation given its long residual effect in the soil and represents ecotoxicological risks in aquatic environments. In this scenario, phytoremediation is an innovative proposal as an alternative method for removing organic pollutants, with its success depending on the careful selection of plants with favorable characteristics. The objective of this study was to identify imazapic-tolerant plant species for potential use in phytoremediation programs. Eight experiments were conducted in a greenhouse using the species Panicum maximum, Crotalaria juncea, Stylosanthes spp., Cajanus cajan, Dolichos lablab, Pennisetum glaucum, Mucuna aterrima, and Raphanus sativus, considering five doses of imazapic (0; 58.33; 87.5; 175 and 350 g ha-1). The treatments were delineated in randomized blocks with four replicates. The symptoms of visual toxicity, height, and dry mass of the plants were determined at 30 and 60 days after plant emergence and at the end of the experiment. The species M. aterrima, C. cajan, and D. lablab presented no visual symptoms of phyto-intoxication. M. aterrima promoted greater dry mass production when cultivated as a control, and exposure to imazapic did not affect this characteristic. Height and dry mass reduction required higher doses in tolerant species, although the results were not significant for D. lablab and C. cajan. Among the studied species, M. aterrima stood out for its high biomass production, promising phytoremediation of sites with imazapic residues.

Downloads

Download data is not yet available.

Author Biography

Adriano Jakelaitis, Instituto Federal Goiano - Campus de Rio Verde

Possui graduação em Agronomia (1997), Mestrado (2001) e Doutorado (2004) em Fitotecnia pela Universidade Federal de Viçosa (UFV). É docente e pesquisador do Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano) Campus de Rio Verde na área de Fitotecnia. Atua em linhas de pesquisa referentes à ciência das plantas daninhas, sistemas integrados de cultivo (plantio direto e integração agricultura pecuária) e técnicas culturais aplicadas em culturas alimentícias e agroenergéticas.

References

ALISTER CA & KOGAN M. 2005. Efficacy of imidazolinone herbicides applied to imidazolinone resistant maize and their carryover effect on rotational crops. Crop Protection 24: 375-379.

ALLAN HL et al. 2017. Analysis of sugarcane herbicides in marine turtle nesting areas and assessment of risk using in vitro toxicity assays. Chemosphere 185: 656-664.

ALVES C et al. 2018. Selection of species with soil phytoremediation potential after the application of Protox inhibiting herbicides. Planta Daninha 36: e018174765.

BALABANOVA DA et al. 2016. Photosynthetic performance of the imidazolinone resistant sunflower exposed to single and combined treatment by the herbicide imazamox and an amino acid extract. Frontiers in Plant Science 7: 1-10.

BELO AF et al. 2011. Potencial de espécies vegetais na remediação de solo contaminado com sulfentrazone. Planta Daninha 29: 821-828.

BUNDT AC et al. 2015. Imidazolinone degradation in soil in response to application history. Planta Daninha 33: 341-349.

COUTINHO HD & BARBOSA AR 2007. Fitorremediação: considerações gerais e características de utilização. Silva Lusitana 15: 103-117.

DAVIS AM et al. 2014. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area. Science Total Environment 490: 81-92.

DOR E et al. 2016. Characterization of the novel tomato mutant HRT, resistant to acetolactate synthase-inhibiting herbicides. Weed Science 64: 348-360.

GALON L et al. 2014. Potential of plant species for bioremediation of soils applied with imidazolinone herbicides. Planta Daninha 32: 719-726.

GARCÍA-GARIJO A et al. 2013. Physiological and biochemical responses of common vetch to the imazamox accumulation. Plant Physiology and Biochemistry 73: 321-325.

GERHARDT KE et al. 2017. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science 256: 170-185.

GOLOMBIESKI JI et al. 2016. Imazapyr + imazapic herbicide determines acute toxicity in silver catfish Rhamdia quelen. Ecotoxicology and Environmental Safety 128: 91-99.

JIMÉNEZ F et al. 2015. Resistance to imazamox in Clearfield soft wheat (Triticum aestivum L.). Crop Protection 78: 15-19.

KASPAR M et al. 2011. Selection of a sunflower line with multiple herbicide tolerance that is reversed by the P450 inhibitor malathion. Weed Science 59: 232-237.

KAWAHIGASHI H. 2009. Transgenic plants for phytoremediation of herbicides. Current Opinion in Biotechnology 20: 225-230.

LIU C et al. 2016. Imazamox microbial degradation by common clinical bacteria: Acinetobacter baumannii IB5 isolated from black soil in China shows high potency. Journal of Integrative Agriculture 15: 1798-1807.

LUO J et al. 2017. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks. Chemosphere 185: 386-393.

MADALÃO JC et al. 2013. Susceptibilidade de espécies de plantas com potencial de fitorremediação do herbicida sulfentrazone. Revista Ceres 60: 111-121.

MADALÃO JC et al. 2012. Uso de leguminosas na fitorremediação de solo contaminado com sulfentrazone. Pesquisa Agropecuária Tropical 42: 390-396.

MAPA/AGROFIT. 2019. Sistemas de Agrotóxicos Fitossanitários - Consulta Aberta. Disponível em: http://agrofit.agricultura.gov.br/agrofit/. Acesso em: 14 dez. 2019.

MARCACCI S et al. 2006. Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environmental and Experimental Botany 56: 205-215.

MARCHESAN E et al. 2010. Carryover of imazethapyr and imazapic to nontolerant rice. Weed Technology 24: 6-10.

MATOCHA MA et al. 2003. The persistence of imazapic in peanut (Arachis hypogaea) crop rotations. Weed Technology 17: 325-329.

MAZLAN AZ et al. 2016. Assessment of imazapic presence surface water and groundwater in paddy field area. Jurnal Teknologi 78: 33-37.

MITTON FM et al. 2018. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process. Ecotoxicology and Environmental Safety 147: 151-156.

MONQUERO PA et al. 2013. Seleção de espécies de adubos verdes visando à fitorremediação de diclosulam. Planta Daninha 31: 127-135.

NEWSOM LJ et al. 1995. Absorption, translocation, and metabolismo of AC 263,222 in selected soybean (Glycine max) cultivars. Weed Science 43: 536-540.

NISSIM WG et al. 2018. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environmental Research 164: 356-366.

NWAICHI OE & AYALOGU OE 2010. Allelopathy as expressed by Mucuna pruriens and the possibility for weed management. International Journal of Plant Physiology and Biochemistry 2: 1-5.

NWAICHI EO et al. 2009. Phytoextracting Cadmium and Copper Using M. pruriens. African Journal Plant Science 3: 277-282.

PÉREZ-IGLESIAS JM et al. 2018. Are the damaging effects induced by the imazethapyr formulation Pivot® H in Boana pulchella (Anura) reversible upon ceasing exposure? Ecotoxicology and Environmental Safety 148: 1-10.

PIRES FR et al. 2008. Avaliação da fitorremediação de tebuthiuron utilizando Crotalaria juncea como planta indicadora. Revista Ciência Agronômica 39: 245-250.

REIMCHE GB et al. 2015. Imazethapyr and imazapic, bispyribac-sodium and penoxsulam: Zooplankton and dissipation in subtropical rice paddy water. Science of the Total Environment 514: 68-76.

RIBEIRO TS et al. 2015. Avaliação do potencial de biorremediação de solos contaminados: método de hidrólise de diacetato de fluoresceína (FDA) como indicador de atividade microbiana. Revista Aquila 13: 105-120.

ROJANO-DELGADO AM et al. 2012. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants. Phytochemistry 73: 34-41.

ROJANO-DELGADO AM et al. 2015. Mechanism of imazamox resistance of the Clearfield® wheat cultivar for better weed control. Agronomy for Sustainable Development 35: 639-648.

SÁNCHEZ V et al. 2017. Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils. Chemosphere 185: 119-126.

SANTOS LO et al. 2014. Carryover effect of imidazolinone herbicides for crops following rice. American Journal of Plant Sciences 5: 1049-1058.

SCHWITZGUÉBEL JP. 2017. Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. Journal of Soils and Sediments 17: 1492-1502.

SHAIFUDDIN SNM. 2016. Optimization of extraction and detection method for imazapyr and imazapic residues in water, soil and fish tissue samples using high performance liquid chromatography. Jurnal Teknologi 78: 43-48.

SILVA DRO et al. 2011. Ocorrência de agrotóxicos em águas subterrâneas de áreas adjacentes a lavouras de arroz irrigado. Química Nova 34: 748-752.

SIMINSZKY B. 2006. Plant cytochrome P450-mediated herbicide metabolism. Phytochemistry Reviews 5: 445-458.

SBCPD. 1995. Sociedade Brasileira da Ciência das Plantas Daninhas. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina: SBCPD. 42p.

SOUSA CP et al. 2012. Growth of residual herbicide (imazethapyr+imazapic) bio-indicators sown in rotation with Clearfield® rice. Planta Daninha 30: 105-111.

SOUTO KM et al. 2015. Phytoremediation of lowland soil contaminated with a formulated mixture of imazethapyr and imazapic. Revista Ciência Agronômica 46: 185-192.

SPOHN M et al. 2013. Microbial gross organic phosphorus mineralization can be stimulated by root exudates - A ³³P isotopic dilution study. Soil Biology and Biochemistry 65: 254-263.

SU W et al. 2019. Adsorption and degradation of imazapic in soils under different environmental conditions. PloS one 14: 1-11.

SU W et al. 2016. Effect of imazapic residues on photosynthetic traits and chlorophyll fluorescence of maize seedlings. Photosynthetica 55: 294-300.

TAN S et al. 2005. Imidazolinone tolerant crops: history, current status and future. Pest Management Science 61: 246-257.

VEGA T et al. 2012. Acetohydroxyacid synthase (AHAS) in vivo assay for screening imidazolinone-resistance in sunflower (Helianthus annuus L.). Plant Physiology and Biochemistry 61: 103-107.

ZANELLA R et al. 2012. Herbicides persistence in rice paddy water in southern Brazil. Herbicides - mechanisms and mode of action. 1.ed. Rijeka: InTech. 23p.

ZHAO B et al. 2017. Non-target site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population. Pesticide Biochemistry and Physiology 140: 79-84.

ZHOU Q et al. 2007. Action mechanisms of acetolactate synthase inhibiting herbicides. Pesticide Biochemistry and Physiology 89: 89-96.

YORK AC et al. 2000. Cotton response to imazapic and imazethapyr applied to a preceding peanut crop. The Journal of Cotton Science 4: 210-216.

YU Q et al. 2004. Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pesticide Biochemistry and Physiology 78: 21-30.

Published

2020-06-30

How to Cite

VASCONCELO, Simonny Montthiel Araújo; JAKELAITIS, Adriano; COSTA, Mailon Lucas Meurer; OLIVEIRA, Romário Rodrigues Cunha de; SANTOS, Vanessa Silva. Selection of tolerant species for contaminated soil phytemedication using imazapic. Revista de Ciências Agroveterinárias, Lages, v. 19, n. 2, p. 149–158, 2020. DOI: 10.5965/223811711922020149. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/15230. Acesso em: 30 jun. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products

Most read articles by the same author(s)