Effect of injectable trace mineral supplement and vitamins A and E on production and milk composition of Holstein cows
DOI:
https://doi.org/10.5965/223811711642017463Keywords:
vitamin E, milk, vitamins, vitamin A, lactation, dairy cows, seleniumAbstract
The purpose of this research was to evaluate the use of mineral traces (Copper, Zinc, Selenium, and Manganese), as well as vitamins A and E in injectable forms on the production and composition of Dutch cow milk at the end of the transitional period, until after 60 days of lactation. 31 females were divided into two experimental groups: the treated grou p (n= 15) that received mineral supplements (10 mg of Copper, 40 mg of Zinc, 5 mg of Selenium, and 10 mg of Manganese) and vitamins (175 mg of vitamin A and 250 mg of vitamin E) and injections (5 mL minerals trace solution and 5 mL vitamin solution subcutaneously). After 225 gestation days, 255 pregnancy days and the estimated day of delivery, the control group (n = 16) that received injections of the sterilizing solution (5 mL dosage from a subcutaneous via) on the same days as the treated group. Milk samples were collected on the 7th, 14th and 21st days after birth, which were used to evaluate the production, the quality (colostrum), and composition (fat, lactose, protein, nonfat dry extract, total solids, urea, and somatic cell count (SCC)). The initial and minimum values estimated by the model indicated that there was not a difference in milk production and SCC levels between the groups. Among the remaining milk components, only the urea showed significant differences between treated and untreated groups (p= 0.002). Also, there were no significant differences observed in the quality of the colostrum. This leads us to believe that the use of injectable solutions containing Cu, Zn, Se, Mn and vitamins A and E have no effect on the composition of urea in the milk, and also showed no effect on SCC and other milk components, as well as in production. However, more studies should be performed.Downloads
References
AL-QUDAH KM & ISMAIL ZB. 2012. The relationship between serum biotin and oxidant/antioxidant activities in bovine lameness. Research in Veterinary Science 92: 138-141.
ALVES NG et al. 2009. Nutrição e reprodução em vacas leiteiras. Revista Brasileira de Reprodução Animal 6: 118- 124.
AOAC – Association of Official Analytical Chemists. 1995. Official methods of analysis of the association of the official analysis chemists. 16.ed. Arlington: AOAC.
BATISTA CG. et al. 2012. Utilização de minerais iônicos ou complexos orgânicos de minerais no pré parto de vacas Holandesas. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 64: 1232-1238.
CONTRERAS GA & SORDILLO LM. 2011. Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comparative Immunology, Microbiology & Infectious Diseases 34: 281-289.
ENJALBERT F et al. 2006. Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: Retrospective study. Journal of Animal Physiologycal and Animal Nutrition 90: 459-466.
GIERUS M. 2007. Fontes orgânicas e inorgânicas de selênio na nutrição de vacas leiteiras: digestão, absorção, metabolismo e exigências. Ciência Rural 37: 1212-1220.
GOFF JP et al. 2002. Effect of mastectomy on milk fever, energy, and vitamins A, E, and beta-carotene status at parturition. Journal of Dairy Science 85:1427-1436.
HEARD JW et al. 2007. Increasing selenium concentration in milk: Effects of amount of selenium from yeast and cereal grain supplements. Journal of Dairy Science 90: 4117-4127.
ISO 13366-2:2006 - IDF 148-2:2006. 2006. Milk — Enumeration of somatic cells — Part 2: Guidance on the operation of fluoro-opto-electronic counters.
ISO 9622:2013- IDF 141:2013. 2013. Milk and liquid milk products — Guidelines for the application of midinfrared spectrometry.
JUKOLA E et al. 1996. Blood selenium, vitamin E, vitamin A, and β-Carotene concentrations and udder health, fertility treatments, and fertility. Journal of Dairy Science 79: 838- 845.
KELLOGG DW et al. 2004. Review: Effects of Zinc Methionine Complex on milk production and somatic cell count of dairy cows: Twelve-trial summary. The Professional Animal Scientist 20: 295-301.
KOMAREK AR. 1993. A filter bag procedure for improved efficiency of fiber analysis. Journal of Dairy Science 76: 250.
LACETERA N et al. 1996. Effects of selenium and vitamin E administration during a late stage of pregnancy on colostrum and milk production in dairy cows, and on passive immunity and growth of their offspring. American Journal of Veterinary Research 57: 1776-1780.
LAMB GC et al. 2008. Effect of organic or inorganic trace mineral supplementation on follicular response, ovulation, and embryo production in superovulated Angus heifers. Animal Reproduction Science 106: 221-231.
MACHADO VS et al. 2013. The effect of injectable trace minerals (selenium, copper, zinco and manganese) on peripheral blood leukocyte activity and serum superoxide dismutase activity of lactating Holstein cows. The Veterinary Journal 200: 299-304.
NOCKELS CF et al. 1993. Stress induction affects copper and zinc balance in calves fed organic and inorganic copper and zinc sources. Journal of Animal Science 71: 2539-2545.
NRC - National Research Council. 2001. Nutrient requirements of dairy cattle. 7.ed. Washinton, D.C.: National Academic Press. 381p.
PASCHOAL JJ et al. 2006. Contagem de células somáticas no leite de vacas suplementadas no pré-parto com selênio e vitamina E. Ciência Rural 36: 1462-1466.
PEDREIRA MS & BERCHIELLI TT. 2006. Minerais. In: BERCHIELLI TT et al. (Eds.). Nutrição de Ruminantes. Jaboticabal: Funep. p.333-353.
PEIXOTO PV et al. 2005. Princípios de suplementação mineral em ruminantes. Pesquisa Veterinária Brasileira 25: 195-200.
POGGE DJ et al. 2012. Mineral concentrations of plasma and liver after injection with a trace mineral complex differ among Angus and Simmental cattle. Journal of Animal Science 90: 2692-2698.
R CORE TEAM. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
RABIEE AR et al. 2010. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. Journal of Dairy Science 93: 4239-4251.
ROBERTSON JB & VAN SOEST PJ. 1981. The detergent system of analysis. In: JAMES WPT & THEANDER O. (Eds.). The Analysis of Dietary Fibre in Food. New York: Marcel Dekker. p. 123-158.
ROCHE JR et al. 2009. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science 92: 5769- 5801.
SCHANKAR AH & PRASAD AS. 1998. Zinc and immune function: The biological basis of altered resistence to infection. The American Journal of Clinical Nutrition 68: 447-463.
SORDILLO LM & AITKEN SL. 2009. Impact of oxidative stress on the health and immune function of dairy cattle. Veterinary Immunology and Immunopathology 128: 104-109.
TYRRELL HF & REID JT. 1965. Prediction of the energy value of cow’s milk. Journal of Dairy Science 48: 1215- 1223.
VAN SOEST PJ et al. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597.
VIERO V et al. 2010. Efeito da suplementação com diferentes níveis de selênio orgânico e inorgânico na produção e na composição do leite e no sangue de vacas em lactação. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 62: 282-390.
WEISS WP et al. 1990. Effect of duration of supplementation of selenium and vitamin E on periparturient dairy cows. Journal of Dairy Science 73: 3187-3194.
WEISS WP et al. 1997. Effect of vitamin E supplementation in diets with a low concentration of selenium on mammary gland health of dairy cows. Journal of Dairy Science 80: 1728-1737.
WEISS WP. 2005. Antioxidants nutrients, cow health and milk quality. In: Dairy Cattle Nutrition Workshop, Department of Dairy and Animal Sciences, Pennsylvania State University. p. 11-18.
XIN Z et al. 1993. Cooper status and requirement during the dry period and early lactation in multiparous Holstein cows. Journal of Dairy Science 76: 2711-2716.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Revista de Ciências Agroveterinárias (Journal of Agroveterinary Sciences)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors publishing in this journal are in agreement with the following terms:
a) Authors maintain the copyrights and concede to the journal the copyright for the first publication, according to Creative Commons Attribution Licence.
b) Authors have the authority to assume additional contracts with the content of the manuscript.
c) Authors may supply and distribute the manuscript published by this journal.