Climate and Physiographic Suitability Mapping System - AptClim: access, method, and example of use

Authors

DOI:

https://doi.org/10.5965/223811712332024463

Keywords:

google earth engine, climatology, climate change, agrometeorology

Abstract

The main objective of the Climate and Physiographic Suitability Mapping System (AptClim) is to allow the user to assess the climate and physiographic suitability of an area of interest using different criteria and climatic periods. AptClim was developed on the Google Earth Engine (GEE) platform and is available at https://ee-vianna.projects.earthengine.app/view/aptclim. Using AptClim, it is possible to map and evaluate the climatic and physiographic suitability considering the monthly climatology of minimum and maximum temperatures and rainfall, as well as the slope of the relief. In this article we present AptClim, how to access it, the method used to calculate suitability and a case study to analyze the variation in climate suitability for the juçara palm (Euterpe edulis) over the last four decades. In the case evaluated, AptClim proved to be an accessible, practical and agile tool for analyzing climate suitability, generating suitability maps, calculating areas by suitability class and generating historical climate series.

Downloads

References

ABATZOGLOU JT et al. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data 5: 1–12.

ANDERSON MJ. 2006. Distance‐Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62: 245–253.

BRASIL. 2019. Decreto no 9.841, de 18 de junho de 2019 - Dispõe sobre o Programa Nacional de Zoneamento Agrícola de Risco Climático. Decreto oficial [da] república federativa do Brasil. p.5–6.

FAO & IIASA. 2021. Global Agro-Ecological Zones (GAEZ v4) - Data Portal user’s guide. Rome: FAO and IIASA.

FARR T & KOBRICK M. 2007. The shuttle radar topography mission. Rev. Geophys 45: 1–33.

GORELICK N et al. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18–27.

GRITA F. 2016. The Global Administrative Unit Layers (GAUL) BASIC CONCEPTSFood and Agriculture Organization (FAO). [s.l: s.n.]. Disponível em: <https://www.slideshare.net/FAOoftheUN/the-global-administrative-unit-layers-gaul-basic-concepts>.

KLEIN RMRM. 1978. Mapa fitogeográfico do estado de Santa Catarina. Itajaí: Herbário Barbosa Rodrigues.

MENDES A & CRISTINA M. 2016. Já podemos observar os impactos das mudanças climáticas na cultura da maçã em Santa Catarina? Agropecuária Catarinense 29: 13–14.

PANDOLFO C. et al. 2015. Impactos das mudanças climáticas sobre a viticultura no estado de Santa Catarina. Agropecuária Catarinense 28: 61–66.

PETER BG et al. 2019. Web-based GIS for spatiotemporal crop climate niche mapping. Harvard Dataverse. Disponível em: <https://doi.org/10.7910/DVN/UFC6B5>

SILVA JZ & REIS MS. 2018. Fenologia reprodutiva e produção de frutos em Euterpe edulis (Martius). Ciência Florestal 28: 295–309.

SOUZA CM et al. 2020. Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sensing 12: 27p.

SZCZYGEL MT et al. 2021. Occurrence of euterpe edulis mart. (arecaceae) in atlantic forest fragments in southern brazil. Check List 17: 1395–1401.

VIANNA LFN et al. 2023. Potential cultivation areas of Euterpe edulis (Martius) for rainforest recovery, repopulation and açai production in Santa Catarina, Brazil. Scientific Reports 13: 6272.

Published

2024-10-04

How to Cite

VIANNA, Luiz Fernando. Climate and Physiographic Suitability Mapping System - AptClim: access, method, and example of use. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 3, p. 463–472, 2024. DOI: 10.5965/223811712332024463. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/25258. Acesso em: 9 jan. 2025.

Issue

Section

Research Article - Multisections and Related Areas