Validação prática de modelos de infravermelho próximo para tomate: sólidos solúveis e acidez

Autores

DOI:

https://doi.org/10.5965/223811712122022114

Palavras-chave:

NIR, qualidade, solanum lycopersicum L., espectroscopia

Resumo

O tomate é a hortaliça mais produzida e consumida, tendo aceitabilidade tanto para o consumo in natura quanto para a industrialização. Apesar da ampla aceitação dos tomates, o consumidor apresenta como exigência para aquisição do fruto a qualidade, mensurada através de parâmetros como sólidos solúveis (SS) e acidez titulável (AT). Uma técnica de análise química, não destrutiva e não invasiva e de resposta rápida, é a de espectroscopia de absorção na região do infravermelho próximo que tem sido bastante utilizada em várias indústrias, desde agrícola a petroquímica. Considerando a produção em alta escala, a qualidade do tomate exigida pelos consumidores e por se tratar de uma técnica não destrutiva e não invasiva da espectroscopia no infravermelho próximo (Near Infrared Spectroscopy – NIR), faz-se necessário modelos testados em condições comerciais garantindo um modelo de infravermelho próximo para tomate facilitando a classificação. Realizou-se a validação de forma externa e prática dos modelos de infravermelho próximo para tomate in natura, comparando com os métodos destrutivos e conferindo a acurácia dos modelos na qualificação do fruto quanto aos teores de sólidos solúveis e acidez. O presente trabalho apresenta modelos do projeto executado de 2018 a 2019, construídos através dos aplicativos Model Builder e The Unscrambler e selecionados a partir de parâmetros como coeficiente de calibração, coeficiente da validação cruzada, erro médio do conjunto de calibração, e da validação cruzada e cálculo do desvio do resíduo de calibração. Os resultados foram obtidos através da previsão do modelo para os atributos sólidos solúveis (SS) e acidez titulável (AT), do tomate de mesa com maior variabilidade de produção. O modelo para SS apresenta potencialidade para uso comercial, seja na determinação de ponto de colheita, seja na quantificação de qualidade do vegetal. Já para AT, o NIR portátil não produziu um modelo aplicável pela limitação do comprimento de onda.

Downloads

Não há dados estatísticos.

Referências

ACHARYA UK et al. 2017. Robustness of tomato quality evaluation using a portable vis-swnirs for dry matter and colour. International Journal of Analytical Chemistry 2017: 2863454.

AGUIAR FCO et al. 2019. Uso da espectroscopia de infravermelho próximo e regressão de mínimos quadrados parciais na avaliação do teor de sólidos solúveis em frutos íntegros de tomateiro. In: 16 Congresso de Pesquisa, Ensino e Extensão, Anais... Goiânia: UFG. 134p.

AIKAS DP et al. 2020. Non-destructive quality assessment of tomato paste by using portable mid-infrared spectroscopy and multivariate analysis. Foods 9: 1300.

ALENCAR ES. 2017. Composição nutricional de duas variedades do tomate (Solanum lycopersicum) comercializado em São Luís – MA. TCC (Graduação Química). São Luís: UFMA. 51p.

BASSO A. 2019. Decomposição fotocatalítica do etileno visando o controle de maturação de tomate cereja. Tese (Doutorado em Eng. Química). Florianópolis: UFSC. 80p.

BORBA KR et al. 2019. Determinação de sólidos solúveis em tomates utilizando espectroscopia de infravermelho médio. In: Simpósio Nacional de Instrumentação Agropecuária. Resumos... São Carlos: Embrapa Instrumentação. 675p.

BORBA KR et al. 2021. Portable near infrared spectroscopy as a tool for fresh tomato quality control analysis in the field. Apllied Sciences 11: 3209.

BORIN A. 2003. Aplicação de quimiometria e espectroscopia no infravermelho no controle de qualidade de lubrificantes. Dissertação. (Mestrado em Engenharia Florestal). São Paulo: UNICAMP. 60p.

BRITO AA et al. 2021. Determination of soluble solid content in market tomatoes using Near-infrared Spectroscopy. Food Control 126: 108068.

CALEGARI MA. 2018. Espectroscopia na região do infravermelho próximo (NIR) e calibração multivariada: desenvolvimento de modelos de PLS para a determinação da atividade antioxidante em amostras de própolis. Dissertação. (Mestrado em Tecnologia de Processos Químicos e Bioquímicos). Pato Branco: UTFP. 75p.

CASTRIGNANÒ A et al. 2019. Assessing the feasibility of a miniaturized near-infrared spectrometer in determining quality attributes of san marzano tomato. Food Analytical Methods 12: 1497-1510.

CEAGESP 2021. Companhia de Entrepostos e Armazéns Gerais de São Paulo. Disponível em: <https://ceagesp.gov.br/hortiescolha/hortipedia/tomate/>. Acesso em: 22 jun. 2021.

FAOSTAT. 2021. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Statistical database. Rome: FAO.

GUARIGLIA BA. 2020. Viabilidade e aplicabilidade da espectroscopia do infravermelho próximo em laranjas. Dissertação. (Mestrado em Ciência e Tecnologia de Alimentos). Goiânia: UFG. 58p.

IBGE. 2021. Instituto Brasileiro de Geografia e Estatística. Indicadores, Levantamento Sistemático da Produção Agrícola: Estatística da Produção Agrícola.

INSTITUTO ADOLFO LUTZ. 2008. Normas Analíticas do Instituto Adolfo Lutz. In: Métodos químicos e físicos para análise de alimentos. 3.ed. São Paulo: IMESP. 183p.

LEQUEUE G et al. 2016. Determination by near infrared microscopy of the nitrogen and carbon content of tomato (Solanum lycopersicum L.) leaf powder. Scientific Reports 6: 33183.

NAJJAR K & ABU-KHALAF N. 2021. Non-destructive quality measurement for three varieties of tomato using VIS/NIR spectroscopy. Sustainability 13: 10747.

NICOLAI BM et al. 2007. Nondestructive measurements of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology 46: 99-118.

OLIVEIRA TM. 2020. Efeito de revestimentos comestíveis na qualidade do tomate cereja cultivado nos sistemas orgânico e convencional. Dissertação. (Mestrado em Olericultura). Morrinhos: IFG. 56p.

PARRON et al. 2011. Manual de procedimentos de amostragem e análise físico-química de água. Embrapa Florestas-Documentos (INFOTECA-E).

PINHEIRO DT et al. 2017. Aspectos tecnológicos e qualitativos da produção de sementes de tomate. Revista Espacios 38: 10-24.

SAAD AG et al. 2014. Non-destructive quality evaluation of intact tomato using VIS-NIR spectroscopy. International Journal of Advanced Research 2: 632-639.

SANTOS JÚNIOR A & BUENO SM. 2019. Avaliação da viabilidade da utilização do excedente da produção do tomate de mesa para produção de tomate seco. Revista Unilago 1: 1-10.

SUN D et al. 2021. Near infrared spectroscopy determination of chemical and sensory properties in tomato. Journal of Near Infrared Spectroscopy 29: 289-300.

TIBOLA CS et al. 2018. Espectroscopia no infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos. Brasília: Embrapa.

WALSH KB et al. 2020. The uses of near infra-red spectroscopy in postharvest decision support: A review. Postharvest Biology and Technology 163: 111139.

Downloads

Publicado

2022-03-25

Como Citar

AGUIAR , F. C. de O.; GUARIGLIA, B. A. D. .; BRITO, A. A. de .; CAMPOS, L. F. C.; NASCIMENTO, A. dos R. .; CORRÊA , G. de C. .; CUNHA JUNIOR, L. C. . Validação prática de modelos de infravermelho próximo para tomate: sólidos solúveis e acidez. Revista de Ciências Agroveterinárias, Lages, v. 21, n. 2, p. 114-122, 2022. DOI: 10.5965/223811712122022114. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/21197. Acesso em: 5 jul. 2022.

Edição

Seção

Artigo de Pesquisa - Ciência de Plantas e Produtos Derivados

Artigos mais lidos pelo mesmo(s) autor(es)