Can seed quality of hairy fleabane be reduced due to glyphosate resistance?

Authors

DOI:

https://doi.org/10.5965/223811711712018136

Keywords:

Conyza bonariensis, herbicide resistance, seed vigor, conyza, germination, herbicide

Abstract

The resistance to glyphosate may provide a penalty on plant growth and physiology. We investigate if the resistance to glyphosate reduces the seed quality of Conyza bonariensis by performing seed viability and vigor tests under a completely randomized design with four replicates of 50 seeds for both glyphosate-susceptible (S) and -resistant (R) biotypes. Low seed viability (<50%) was found in both S and R biotypes. No difference occurred between either S and R biotypes on seed germination and embryo viability. The percentage of seed germination of the S biotype was higher than the R biotype in the cold test (~58%), accelerated aging test (~84%), and high-temperature stress test (~45%). This is the first time one found evidences that resistance to glyphosate may be responsible for a penalty on seed quality of C. bonariensis.

Downloads

References

COSTA FR et al. 2014. Differential susceptibility and resistance to glyphosate in annual ryegrass and wavy-leaved fleabane. Communications in Plant Sciences 4: 73-77.

DUFF MG et al. 2009. Relative competitiveness of protoporphyrinogen oxidase-resistant common waterhemp (Amaranthus rudis). Weed Science 57: 169-174.

FERREIRA EA et al. 2008. Potencial produtivo de biótipos de ryegrass (Lolium multiflorum). Planta Daninha 26: 261-269.

GALON L et al. 2013. Características fisiológicas de biótipos de Conyza bonariensis resistentes ao glyphosate cultivados sob competição. Planta Daninha 3: 859-866.

GHERSA CM & MARTÍNEZ-GHERSA MA. 2000. Ecological correlates of weed seed size and persistence in the soil under different tilling systems: implications for weed management. Field Crops Research 67: 141-148.

HEAP I. 2017. International survey of herbicide resistant weeds. Available from: <http://weedscience.com>. Accessed on: Aug. 11, 2017.

HERRERA F et al. 2007. Seed quality of windmillgrass ecotypes in two locations of South Texas. Texas Journal of Agriculture and Natural Resources 20: 98-108.

HOLT JS. 1990. Fitness and ecological adaptability of herbicide-resistant biotypes. In: GREEN MB et al. (Eds.). Managing resistance to agrochemicals: from fundamental research to practical strategies. Washington: ACS. p. 419-429.

MAXWELL BD et al. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technology 4: 2-13.

MOREIRA MS et al. 2010. Crescimento diferencial de biótipos de Conyza spp. resistente e suscetível ao herbicida glifosato. Bragantia 69: 591-598.

PEDERSEN BP et al. 2007. Ecological fitness of a glyphosate-resistant Lolium rigidum population: Growth and seed production along a competition gradient. Basic and Applied Ecology 8: 258-268.

RAO NK et al. 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genetic Resources and Crop Evolution 64: 1061-1071.

SAX DF et al. 2007. Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution 22: 465-471.

SHRESTHA A et al. 2010. Growth, phenology, and intraspecific competition between glyphosate-resistant and glyphosate-susceptible horseweeds (Conyza canadensis) in the San Joaquin valley of California. Weed Science 58: 147-153.

THOMPSON CR et al. 1994. Germination characteristics of sulfonylurea - resistant and - susceptible kochia (Kochia scoparia). Weed Science 42: 50-56.

TORRES-GARCÍA JR et al. 2015. Effect of herbicide resistance on seed physiology of Phalaris minor (littleseed canarygrass). Botanical Sciences 93: 661-667.

TRAVLOS IS & CHACHALIS D. 2013. Relative competitiveness of glyphosate-resistant and glyphosate-susceptible populations of hairy fleabane, Conyza bonariensis. Journal of Pest Science 86: 345-351.

VARGAS L et al. 2005. Alteração das características biológicas de biótipos de Azevém (Lolium multiflorum) ocasionada pela resistência ao herbicida glyphosate. Planta Daninha 23: 153-160.

VILA-AIUB MM et al. 2009. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytologist 184: 751-767.

VILA-AIUB MM et al. 2014. No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri. Planta 239: 793-801.

WEAVER ES & THOMAS G. 1986. Germination responses to temperature of atrazine - resistant and -susceptible biotypes of two pigweed (Amaranthus) species. Weed Science 34: 865-870.

WEIHER E & KEDDY PA. 1999. Ecological assembly rules: perspectives, advances, retreats. Cambridge: Cambridge University Press. 430p.

YANNICCARI M et al. 2016. Glyphosate resistance in perennial ryegrass (Lolium perenne L.) is associated with a fitness penalty. Weed Science 64: 71-79.

Downloads

Published

16-03-2018

How to Cite

COSTA, Flávia Regina da; STINGHEN, Jussara Cristina; BORTOLI, Janice Regina Gmach; COELHO, Cileide Maria Medeiros; CARVALHO, Leonardo Bianco de. Can seed quality of hairy fleabane be reduced due to glyphosate resistance?. Revista de Ciências Agroveterinárias, Lages, v. 17, n. 1, p. 136–141, 2018. DOI: 10.5965/223811711712018136. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/11126. Acesso em: 29 apr. 2025.

Issue

Section

Research Note - Science of Plants and Derived Products

Most read articles by the same author(s)

1 2 3 4 > >>