Oxidação do Amido de Semente de Abacate Hass para a Elaboração de Filmes com Celulose Microcristalina

Autores

DOI:

https://doi.org/10.5965/223811712412025127

Palavras-chave:

Permeabilidade ao vapor de água, Solubilidade, Umidade, D-sorbitol, Filme

Resumo

Este estudo focou na elaboração de filmes à base de amido oxidado extraído de sementes de abacate Hass com celulose microcristalina, como alternativa aos plásticos convencionais para reduzir o impacto ambiental. O amido nativo foi extraído e, em seguida, submetido a um processo de oxidação com hipoclorito de sódio em diferentes tempos de reação para melhorar as propriedades físicas e funcionais dos filmes. O tempo de reação influenciou significativamente a composição química e as propriedades funcionais do amido. O amido com alto grau de oxidação (com grupo carbonila de 0,029%±0,002 e grupo carboxila de 0,078%±0,003) foi selecionado para a formulação dos filmes, e foi realizado um delineamento experimental fatorial para determinar as porcentagens mais adequadas de D-sorbitol e celulose microcristalina, visando minimizar a umidade e a solubilidade dos filmes e melhorar sua permeabilidade ao vapor de água (PVA). Constatou-se que as porcentagens mais adequadas de D-sorbitol e celulose microcristalina foram de 1,5% e 0,2% p/v, respectivamente, para minimizar a umidade e a solubilidade dos filmes; enquanto que, para a PVA, foram de 1,5% e 0,1% p/v, respectivamente. No entanto, os resultados obtidos na minimização da umidade e da solubilidade dos filmes foram muito próximos dos obtidos com as porcentagens de 1,5% e 0,2% p/v. Em conclusão, este estudo demonstrou a viabilidade de utilizar amido oxidado de sementes de abacate Hass para a elaboração de filmes, com D-sorbitol e celulose microcristalina a 1,5% e 0,1% p/v, respectivamente.

Downloads

Não há dados estatísticos.

Referências

ARAÚJO RG et al. 2020. Hydrothermal-microwave processing for starch extraction from Mexican avocado seeds: Operational conditions and characterization. Processes 8: 759.

AYO OMOGIE HN et al. 2022. Physicochemical, Functional, Pasting Properties and Fourier Transform Infrared Spectroscopy of Native and Modified Cardaba banana (Musa ABB) Starches. Food Chemistry Advances 1: 100076.

BALLESTEROS-MÁRTINEZ L et al. 2020. Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS Journal 20: 1–9.

BARBOSA E et al. 2016. Chemical and technological properties of avocado (Persea americana Mill.) seed fibrous residues. Food and Bioproducts Processing 100: 457-463.

BARRAZA G & SICHE R. 2021. Almidón de semilla de palta: Optimización del índice de blancura durante el proceso de extracción. Agroindustrial Science 11: 81–85.

BUSTILLOS-RODRÍGUEZ JC et al. 2019. Physicochemical, Thermal and Rheological Properties of Native and Oxidized Starch from Corn Landraces and Hybrids. Food Biophysics 14: 182–192.

CALERO M et al. 2020. Estado del arte de bioplástico proveniente de los residuos agroindustriales del plátano (musa paradisiaca), para la producción de envases biodegradables. Revista Ingeniería e Innovación 9: 28–37.

CARHUALLAY O et al. 2020. Effect of sodium hypochlorite concentration and oxidation time on the degree of substitution of carboxyl groups, water absorption index and gelatinization temperature of Achira starch (Canna edulis Ker). Agroindustrial Science 10: 165–173.

CHAPUEL A & REYES J. 2019. Obtención de una película biodegradable a partir de los almidones de semilla de aguacate (Persea americana Mill) y banano (Musa acuminata AAA) para el recubrimiento de papaya. Universidad de Guayaquil 17T19:48:13Z.

CHATTOPADHYAY S et al. 1997. Optimisation of conditions of synthesis of oxidised starch from corn and amaranth for use in film-forming applications. Carbohydrate Polymers 34: 203–212.

CORREA V et al. 2019. Aprovechamiento de la semilla de aguacate (Persea americana Mill.) tipo Hass para la extracción de almidón. Aprovechamiento de La Semilla de Aguacate (Persea Americana Mill.) 83: 120–123.

DAO PH et al. 2017. Oxidized Maize Starch: Characterization and Effect of It on the Biodegradable Films.Ii. Infrared Spectroscopy, Solubility of Oxidized Starch and Starch Film Solubility. Vietnam Journal of Science and Technology 55: 395–402.

EL HALAL SLM et al. 2015. Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers 133: 644–653.

FAOSTAT. 2024. FAOSTAT: Producción/Rendimiento de Aguacates en Ecuador 1994-2021. [https://www.fao.org/faostat/es/#data/QCL/visualize] Licencia: CC-BY-4.0 Consultado el 17 de septiembre de 2024.

FASUAN TO et al. 2018. Modification of amaranth (Amaranthus viridis) starch, identification of functional groups, and its potentials as fat replacer. Journal of Food Biochemistry 42: e12537

FAUST S et al. 2022. Effect of glycerol and sorbitol on the mechanical and barrier properties of films based on pea protein isolate produced by high-moisture extrusion processing. Polymer Engineering & Science 62: 95–102.

FONSECA LM et al. 2015. Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT-Ciencia y Tecnología de Los Alimentos 60: 714–720.

FONSECA LM et al. 2018. Fabrication and Characterization of Native and Oxidized Potato Starch Biodegradable Films. Food Biophysics 13: 163–174.

GÓMEZ F & JIMÉNEZ A. 2022. Elaboración de películas biodegradables con policaprolactona y almidóncelulosa de la cáscara de plátano verde (Musa paradisíaca). Alimentos Ciencia e Ingeniería 28: 19–33.

HAZROL MD et al. 2021. Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination with Sorbitol and Glycerol 12: 242.

HIDAYATI S et al. 2015. The application of sorbitol in the production of biodegradable films from nata de cassava. Reaktor 15: 195.

JIMÉNEZ R et al. 2022a. Extraction of starch from Hass avocado seeds for the preparation of biofilms. Food Science and Technology 42: e56820.

JIMÉNEZ R et al. 2022b. Extraction of starch from Hass avocado seeds for the preparation of biofilms. Food Science and Technology 42: 1–6.

LANG H et al. 2022. Effect of Microcrystalline Cellulose on the Properties of PBAT/Thermoplastic Starch Biodegradable Film with Chain Extender. Polymers, 14: 4517.

MACENA JFF et al. 2020. Physico-chemical, morphological and technological properties of the avocado (Persea americana mill. cv. hass) seed starch. Ciencia e Agrotecnologia 44: 001420.

MARGARETTY E et al. 2019. The Effect of Reaction Time and pH on the Process of Sago Starch. Journal of Physics: Conference Series 1167: 1–8.

MARTINS SHF et al. 2022. Extraction and characterization of the starch present in the avocado seed (Persea americana mill) for future applications. Journal of Agriculture and Food Research 8: 100303.

MEDINA J et al. 2018. Hydrolytic degradation and biodegradation of binary mixes of polylactic acid (PLA) with plastic residues. Revista Ingeniería UC 25: 248–258.

MERCI A et al. 2019. Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls. Food Packaging and Shelf Life 20: 100321.

MILLER K et al. 2021. Effects of glycerol and sorbitol on optical, mechanical, and gas barrier properties of potato peel-based films. Packaging Technology and Science, 34: 11–23.

MINISTERIO DEL AMBIENTE Y AGUA. 2020. Ecuador impulsa la gestión adecuada de residuos orgánicos en las ciudades – Ministerio del Ambiente, Agua y Transición Ecológica. Boletìn No 117.

MURILLO-MARTÍNEZ M et al. 2021. Propiedades fisicoquímicas y funcionales del almidón obtenido de dos variedades de batata (Ipomoea batatas). Biotecnología En El Sector Agropecuario y Agroindustrial 19: 117–127.

NORMA MEXICANA NMX-K-281-SCFI-2012. 2012. Concentración de Hipoclorito de Sodio en solución -método de prueba- (cancela a la NMX-K).

OSORIO PA & RUBIANO KD. 2019. Desarrollo de una biopelícula partiendo de cáscara de banano y fibra natural como agente de refuerzo a nivel laboratorio. Bogotá: Fundación Universidad de América.

OTHMAN SH et al. 2019. Tapioca starch films reinforced with microcrystalline cellulose for potential food packaging application. Food Science and Technology 39: 605–612.

PEDRESCHI R et al. 2022. Short vs. Long-Distance Avocado Supply Chains: Life Cycle Assessment Impact Associated to Transport and Effect of Fruit Origin and Supply Conditions Chain on Primary and Secondary Metabolites. Foods 11: 1807.

RIERA MA et al. 2018. Residuos agroindustriales generados en Ecuador para la elaboración de bioplásticos. Revista Ingeniería Industrial 17: 227–246.

RIERA MA & PALMA RR. 2018. Obtención de bioplásticos a partir de desechos agrícolas. Una revisión de las potencialidades en Ecuador. Avances En Química, 13: 69–78.

RINCÓN et al. 2007. Efecto de la acetilación y oxidación sobre algunas propiedades del almidón de semillas de Fruto de pan (Artocarpus altilis). Archivos Latinoamericanos de Nutricion, 57(3), 287–294.

RUILOBA I et al. 2018. Elaboración de bioplástico a partir de almidón de semillas de mango. Revista de Iniciación Científica 4: 28–32.

SÁNCHEZ H et al. 2021. Biofilms production from avocado waste. Ingenieria y Universidad 25: 16p.

SANTOS FKG dos et al. 2017. Effect of the Addition of Carnauba Wax on Physicochemical Properties of Chitosan Films. Materials Research 20: 479–484.

SCHAICH KM. 2016. Analysis of Lipid and Protein Oxidation in Fats, Oils, and Foods. In: HU M & JACOBSEN C. Oxidative Stability and Shelf Life of Foods Containing Oils and Fats. AOCS Press. p.1–131.

SOLARTE-MONTÚFAR JG et al. 2019. Propiedades Reológicas y Funcionales del Almidón. Procedente de Tres Variedades de Papa Criolla. Información Tecnológica 30: 35–44.

SUKHIJA S et al. 2017. Molecular characteristics of oxidized and cross-linked lotus (Nelumbo nucifera) rhizome starch. International Journal of Food Properties 20: S1065–S1081.

SURI S & SINGH A. 2023. Modification of starch by novel and traditional ways: influence on the structure and functional properties. Sustainable Food Technology 1: 348–362.

VANIER NL et al. 2012. Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chemistry 131: 1255–1262.

VIVERO AS et al. 2019. Bioactive compounds and potential health benefits of avocado. Revista Chilena de Nutricion 46: 491–498.

WIJAYA C et al. 2019. Isolation and characterization of starch from Limnophila aromatica. Heliyon 5: e01622.

YADAV A et al. 2018. Biopolymers as packaging material in food and allied industry. International Journal of Chemical Studies 6: 2411–2418.

YAO DÉSIRÉ A et al. 2021. Starch-based edible films of improved cassava varieties Yavo and TMS reinforced with microcrystalline cellulose. Heliyon 7: e06804.

ZHOU F et al. 2016. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. International Journal of Biological Macromolecules 84: 410–417.

Downloads

Publicado

2025-08-12

Como Citar

YÁNEZ-ROMERO, Maria Elena; CEDEÑO-SARES, Luis Alberto; MACAS-JIMÉNEZ, Dayana; VIDAL-ZAPATA, Melissa; BRITO-MOÍNA, Hanníbal Lorenzo; LAPO-CALDERÓN, Byron; BELTRÁN-BALAREZO, Carolina. Oxidação do Amido de Semente de Abacate Hass para a Elaboração de Filmes com Celulose Microcristalina. Revista de Ciências Agroveterinárias, Lages, v. 24, n. 1, p. 127–143, 2025. DOI: 10.5965/223811712412025127. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/26048. Acesso em: 7 set. 2025.

Edição

Seção

Artigo de Pesquisa - Multiseções e Áreas Correlatas