Efeitos da poluição urbana nos parâmetros hematológicos e na capacidade defensiva da truta-arco-íris do Rio Chalhuanca

Autores

DOI:

https://doi.org/10.5965/223811712342024642

Palavras-chave:

Antropogênico, salmão, estresse

Resumo

A truta arco-íris é essencial na dieta andina, especialmente em comunidades onde a qualidade da água é fundamental para a sua saúde e crescimento. Nossa pesquisa se concentra em como as condições ambientais do rio Chalhuanca afetam a saúde física, o estresse crônico e a capacidade imunológica da truta arco-íris, e qual é a relação desses efeitos com a segurança alimentar nas comunidades locais. Foram examinadas trutas juvenis do rio Chalhuanca, coletando 36 amostras em três pontos: antes de Cotaruse, depois de Caraibamba e passando por Chalhuanca. Os peixes foram medidos, pesados e amostras de sangue foram coletadas para avaliar componentes como glóbulos vermelhos, brancos, hemoglobina, hematócrito, glicose e cortisol. Também foi analisada a capacidade dos peixes de combater a bactéria E. coli e foram medidos parâmetros físico-químicos e microbiológicos da água. Os resultados mostraram diferenças significativas na saúde das trutas entre as áreas. As trutas de Chalhuanca apresentaram pior condição corporal e anemia microcítica hipocrômica (hemoglobina: 6.1 g/dL, hematócrito: 29%). Além disso, observou-se uma alta proporção de estresse crônico nesta área. A qualidade da água também mostrou variações, com maiores concentrações de coliformes fecais (1200 UFC/100 mL) e menores níveis de oxigênio dissolvido (4.5 mg/L) em Chalhuanca, indicando um maior grau de contaminação.

Downloads

Não há dados estatísticos.

Referências

ABD-HAMID M et al. 2015. Length-weight Relationship and Condition Factor of Fish Populations in Temengor Reservoir: Indication of Environmental Health. Sains Malaysiana, 44(1), 61–66. https://doi.org/10.17576/jsm-2015-4401-09

ALY S et al. 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunology 25: 128–136.

AMAEZE N et al. 2020. Comparative assessment of the acute toxicity, haematological and genotoxic effects of ten commonly used pesticides on the African Catfish, Clarias gariepinus Burchell 1822. Heliyon 6: e04768.

ARISMENDI I et al. 2011. Body condition indices as a rapid assessment of the abundance of introduced salmonids in oligotrophic lakes of southern Chile. Lake and Reservoir Management, 27(1), 61–69. https://doi.org/10.1080/07438141.2010.536617

BAKRIM S et al. 2018. Hemogram profile and interest of pre-donation hemoglobin measurement in blood donors in the northwest region of Morocco. Transfusion Clinique et Biologique 25: 35–43.

BOLEZA K et al. 2001. Hypercapnic hypoxia compromises bactericidal activity of fish anterior kidney cells against opportunistic environmental pathogens. Fish & Shellfish Immunology 11: 593–610.

CHOWDHURY A et al. 2013. Alteration of haematolocial parameters of ‘zeol fish’- Clarias batrachus exposed to malathion. Bangladesh Journal of Zoology 40: 183–188.

CIFUENTES R et al. 2012. Relación longitud-peso y factor de condición de los peces nativos del río San Pedro (cuenca del río Valdivia, Chile). Gayana (Concepción) 76: 86–100.

CLARK T et al. 2008. Calibration of a hand-held haemoglobin analyser for use on fish blood. Journal of Fish Biology 73: 2587–2595.

CORRÊA L et al. 2013. Hematological parameters of Hoplias malabaricus (Characiformes: Erythrinidae) parasitized by Monogenea in lagoons in Pirassununga, Brazil. Revista Brasileira de Parasitologia Veterinária 22: 457–462.

CURRIE A et al. 2022. Anemia in salmon aquaculture: Scotland as a case study. Aquaculture 546: 737313.

DE-ANDRADE V et al. 2004. Fish as bioindicators to assess the effects of pollution in two southern Brazilian rivers using the Comet assay and micronucleus test. Environmental and Molecular Mutagenesis 44: 459–468.

DENSMORE C et al. 2004. Immunomodulation and Disease Resistance in Postyearling Rainbow Trout Infected with Myxobolus cerebralis, the Causative Agent of Whirling Disease. Journal of Aquatic Animal Health 16: 73–82.

ESPOSITO G et al. 2024. Changes in blood serum parameters in farmed rainbow trout (Oncorhynchus mykiss) during a piscine lactococcosis outbreak. Journal of Fish Diseases 00: e13994.

FAJARDO C et al. 2022. Functional and Molecular Immune Response of Rainbow Trout (Oncorhynchus mykiss) Following Challenge with Yersinia ruckeri. International Journal of Molecular Sciences 23: 3096.

FIERRO C et al. 2024. Assessing the effect of β-glucan diets on innate immune response of tilapia macrophages against trichlorfon exposure: an in vitro study. Fish Physiology and Biochemistry 50: 527–541.

GARCÍA I et al. 2022. Rainbow trout integrated response after recovery from short-term acute hypoxia. Frontiers in Physiology 13: 14p.

GUPTA B et al. 2011. Condition factor, length-weight and length-length relationships of an endangered fish Ompok pabda (Hamilton 1822) (Siluriformes: Siluridae) from the River Gomti, a tributary of the River Ganga, India. Journal of Applied Ichthyology, 27(3), 962–964. https://doi.org/10.1111/j.1439-0426.2010.01625.x

HABIB S et al. 2023. Effect of Different Anaesthetics on Hematology and Blood Biochemistry of Labeo rohita. Aquaculture Studies 24: 6p.

HANANA H et al. 2021. Toxicity of representative mixture of five rare earth elements in juvenile rainbow trout (Oncorhynchus mykiss) juveniles. Environmental Science and Pollution Research, 28(22), 28263–28274. https://doi.org/10.1007/s11356-020-12218-5

HANNIBAL K & BISHOP MD. 2014. Chronic Stress, Cortisol Dysfunction, and Pain: A Psychoneuroendocrine Rationale for Stress Management in Pain Rehabilitation. Physical Therapy 94: 1816–1825.

HARTER T et al. 2015. Validation of the i-STAT and HemoCue systems for the analysis of blood parameters in the bar-headed goose, Anser indicus. Conservation Physiology 3: cov021.

HUANCARÉ R. 2014. Identificación histopatológica de lesiones inducidas por bioacumulación de metales pesados en branquias, hígado y músculo de trucha arcoíris (Oncorhynchus mykiss) de cultivo en etapa comercial de la laguna de Mamacocha, área de influencia minera, Cajamarca-Perú. Tesis (Médico Veterinario). Lima: Universidad Nacional Mayor de San Marcos.

JALALI M et al. 2009. Growth efficiency, body composition, survival and haematological changes in great sturgeon (Linnaeus, 1758) juveniles fed diets supplemented with different levels of Ergosan. Aquaculture Research 40: 804–809.

JENTOFT S et al. 2005. Effects of stress on growth, cortisol and glucose levels in non-domesticated Eurasian perch (Perca fluviatilis) and domesticated rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 141: 353–358.

KATALAY S & PARLAK H. 2004. The Effects of Pollution on Haematological Parameters of Black Goby (Gobius niger L., 1758) in Foça and Aliağa Bays. Su Ürünleri Dergisi 21: 113–117.

KHANNA D et al. 2007. Fish scales as bio-indicator of water quality of River Ganga. Environmental Monitoring and Assessment 134: 153–160.

LEMOS L et al. 2023. Cortisol as a Stress Indicator in Fish: Sampling Methods, Analytical Techniques, and Organic Pollutant Exposure Assessments. International Journal of Environmental Research and Public Health 20: 6237.

MADARO A et al. 2023. Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. Fish Physiology and Biochemistry 49: 97–116.

MARTINEZ M et al. 2009. Cortisol and Glucose: Reliable indicators of fish stress? Pan-American Journal of Aquatic Sciences 4: 158–178.

MATSON K et al. 2006. Capture Stress and the Bactericidal Competence of Blood and Plasma in Five Species of Tropical Birds. Physiological and Biochemical Zoology 79: 556–564.

MESHKINI S et al. 2012. Effects of chitosan on hematological parameters and stress resistance in rainbow trout (Oncorhynchus mykiss). Veterinary Research Forum: An International Quarterly Journal 3: 49–54.

MIZAEVA T et al. 2023. Antibacterial Activity of Rainbow Trout Plasma: In Vitro Assays and Proteomic Analysis. Animals 13: 3565.

MUSHTAQ S et al. 2016. Estimation of length-weight relationship and condition factor of Crossocheilus diplochilus (Heckel, 1838): A freshwater benthopelagic fish from Wular Lake in Kashmir Himalaya . International Journal of Fisheries and Aquatic Studie, 4(6), 522–525.

NABI N et al. 2022. Hematological and serum biochemical reference intervals of rainbow trout, Oncorhynchus mykiss cultured in Himalayan aquaculture: Morphology, morphometrics and quantification of peripheral blood cells. Saudi Journal of Biological Sciences 29: 2942–2957.

OMSA. 2022. Organización Mundial de Sanidad Animal. Código Sanitario para los Animales Acuáticos. Organización Mundial de Sanidad Animal. https://www.woah.org/es/que-hacemos/normas/codigos-y-manuales/acceso-en-linea-al-codigo-acuatico/

OVERLI O. 2005. Behavioral and Neuroendocrine Correlates of Selection for Stress Responsiveness in Rainbow Trout--a Review. Integrative and Comparative Biology 45: 463–474.

PALA E & DEY S. 2016. Microscopy and Microanalysis of Blood in a Snake Head Fish, Channa gachua Exposed to Environmental Pollution. Microscopy and Microanalysis 22: 39–47.

PALAMULENI L & AKOTH M. 2015. Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa. International Journal of Environmental Research and Public Health 12: 8619–8630.

PUCUHUARANGA L. 2019). Estudio de prefactibilidad para la instalación de una piscigranja de trucha arcoíris (Oncorhynchus mykiss) en la provincia de Junin anexo de Huamanrripa. Tesis (Ingeniero Agroindustrial). Lima: Universidad Nacional del Centro del Perú.

RAVICHANDRAN R et al. 2016. Impact of haematological characteristic alteration in tannery effluent treated fish channa punctatus. Int. J. Zool. Appl. Biosci 1: 72–75.

REINOSO D. 2017. Comparación del conteo diferencial de glóbulos blancos de la trucha arcoíris (Oncorhynchus mykiss), en las etapas juvenil y adulta, en una explotación piscícola, ubicada en el cantón Rumiñahui, Pichincha Ecuador. Trabajo de grado. (Médico Veterinario – Zootecnista). Quito: Universidad Central Del Ecuador.

RIBAS J et al. 2016. Effects of trophic exposure to diclofenac and dexamethasone on hematological parameters and immune response in freshwater fish. Environmental Toxicology and Chemistry 35: 975–982.

ROJAS P. 2005. Efecto de la dieta sobre los niveles plasmáticos de insulina y glucagón en trucha arco iris (Oncorhynchus mykiss) y dorada (Sparus aurata) y caracterizacion del transportador de glucosa de dorada. Tesis (Doctor en Biología). Barcelona: Universidad de Barcelona.

RUIZ N et al. 2024. Repeated hypoxic episodes allow hematological and physiological habituation in rainbow trout. Frontiers in Physiology 15: 11p.

SALAZAR R et al. 2009. Paraquat and temperature affect nonspecific immune response of Colossoma macropomum. Environmental Toxicology and Pharmacology 27: 321–326.

SAMARAS A & PAVLIDIS M. 2022. Fish Scales Produce Cortisol upon Stimulation with ACTH. Animals 12: 3510.

SHAH S. 2006. Hematological parameters in tenchTinca tinca after short term exposure to lead. Journal of Applied Toxicology 26: 223–228.

SHARMA R & BHAT R. 2015. Length-weight relationship, condition factor of rainbow trout (Oncorhynchus mykiss) from Kashmir waters. Annals of Biological Research 6: 25–29.

SIMONOT D & FARRELL A. 2007. Cardiac remodelling in rainbow trout Oncorhynchus mykiss Walbaum in response to phenylhydrazine-induced anaemia. Journal of Experimental Biology 210: 2574–2584.

STOSIK M et al. 2020. Immune Functions of Erythrocytes in Osteichthyes. Frontiers in Immunology 11: article 1914.

SUEIRO M & PALACIOS G. 2016. Immunological and health-state parameters in the Patagonian rockfish Sebastes oculatus. Their relation to chemical stressors and seasonal changes. Fish & Shellfish Immunology 48: 71–78.

TABREZ S et al. 2022. Water quality index, Labeo rohita, and Eichhornia crassipes: Suitable bio-indicators of river water pollution. Saudi Journal of Biological Sciences 29: 75–82.

TASLIMA K et al. 2022. Impacts of heavy metals on early development, growth and reproduction of fish – A review. Toxicology Reports 9: 858–868.

THOMAS Y et al. 2019. Effects of hypoxia on metabolic functions in marine organisms: Observed patterns and modelling assumptions within the context of Dynamic Energy Budget (DEB) theory. Journal of Sea Research 143: 231–242.

VAL M et al. 2006. Niveles séricos de hormonas esteroideas en poblaciones de trucha común (salmo trutta fario) como marcadores del grado de contaminación estrogénica de las aguas. Universidad de Valladolid

VERCAUTEREN M et al. 2022. Explorative study on scale cortisol accumulation in wild caught common dab (Limanda limanda). BMC Veterinary Research 18: 324.

VILLA R. 2021. Alimentación de trucha Arco Iris (Oncorhynchus mykiss) mediante ensilado químico de viseras de trucha en la fase de ceba. RevistaEIA 18: 1–10.

WANG Z et al. 2016. Transcriptome profiling analysis of rare minnow (Gobiocypris rarus) gills after waterborne cadmium exposure. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 19: 120–128.

ZHELEV Z et al. 2016. Morphological and hematological parameters of Carassius Gibelio (Pisces: Gyprinidae) in conditions of anthropogenic pollution in Southern Bulgaria. Use of hematological parameters as biomarkers. Trakia Journal of Science 14: 1–15.

ZUTSHI B et al. 2010. Alteration in hematology of Labeo rohita under stress of pollution from Lakes of Bangalore, Karnataka, India. Environmental Monitoring and Assessment 168: 11–19.

Publicado

2024-12-18

Como Citar

MELÉNDEZ FLORES, Keyro Alberto. Efeitos da poluição urbana nos parâmetros hematológicos e na capacidade defensiva da truta-arco-íris do Rio Chalhuanca. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 4, p. 642–651, 2024. DOI: 10.5965/223811712342024642. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/25450. Acesso em: 22 dez. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados