Concentrado fibroso no desempenho produtivo e reprodutivo de porquinhos-da-índia em criação familiar-comercial nos Andes

Autores

DOI:

https://doi.org/10.5965/223811712342024661

Palavras-chave:

alimentação com concentrado fibroso, criação familiar-comercial de cobaias, desempenho reprodutivo, ganho de peso, desempenho produtivo

Resumo

A cobaia criada nos Andes, tradicionalmente alimentadas com forragem, têm baixo desempenho produtivo e reprodutivo. O objetivo do estudo foi avaliar a alimentação com concentrado fibroso no desempenho reprodutivo e produtivo de cobaias. Uma amostra de 110 cobaias fêmeas (963,1 ± 127,3 g) e 22 cobaias machos (1209,9 ± 159,0 g) da raça Peru foi distribuída em 22 módulos de reprodução (1 macho/5 fêmeas), dos quais 11 módulos foram alimentados com forragem (controle) e 11 módulos com concentrado fibroso (experimental). Cada módulo era uma réplica. A forragem foi o feno de aveia integral, enquanto o concentrado fibroso foi uma mistura feita com feno picado da mesma aveia, milho-soja, suplemento vitamínico-mineral, sal comum e pré-mix. Ambos os grupos receberam as mesmas quantidades de alfafa fresca como fonte de vitamina C. Em seguida, foram utilizados 92 coelhos desmamados do grupo controle (248,8 ± 29,9 g) e 106 coelhos do grupo experimental (350,5 ± 64,6 g), resultantes da reprodução, alimentados com as mesmas dietas para avaliar seu desempenho produtivo. O grupo experimental superou o grupo controle em todas as variáveis (p < 0,05): consumo de matéria seca (81,2 ± 4,5 vs. 77,9 ± 1,0 g/dia), peso das fêmeas no pós-parto (1394,0 ± 81,5 vs. 1161,4 ± 50,3 g), peso do macho (1479,8 ± 125,1 vs. 1287,6 ± 124,4), tamanho da ninhada (2. 24 ± 0,45 vs. 1,89 ± 0,68), peso da ninhada (415,1 ± 80,2 vs. 291,3 ± 37,8 g), peso ao desmame (350,5 ± 64,6 vs. 248,8 ± 29,9 g), ganho de peso aos 60 dias de criação (9,59 ± 1,41 vs. 6,41 ± 0,69 g) e tempo de criação até peso comercial (60 vs. 105 dias), respetivamente. O concentrado fibroso alcança melhor desempenho reprodutivo e produtivo que a forragem, podendo ser uma alternativa viável para a criação familiar e comercial de porquinhos-da-índia nos Andes

Downloads

Não há dados estatísticos.

Referências

ARAUJO M et al. 2018. Effects of protein levels on guinea pig on growth performance, nitrogen utilization, and nutritional composition of meat by guinea pigs. J Anim Sci 96: 260.

AUDZIJONYTE A & RICHARDS SA. 2018. The energetic cost of reproduction and its effect on optimal life-history strategies. The American Naturalist 192: 24p.

AYAGIRWE RBB et al. 2019. Phenotypic variability and typology of cavy (Cavia porcellus) production in the Democratic Republic of Congo (DRC). Genetics and Biodiversity Journal 3: 11–23.

BAKER DH. 2007. Lysine, arginine, and related amino acids: An introduction to the 6th amino acid assessment workshop. Journal of Nutrition 137: 1599-1601.

BELLO-PEREZ LA et al. 2020. Starch digestibility: Past, present, and future. Journal of de Science of Food and Agriculture 100: 5009–5016.

BOLARINWA OA & ADEOLA O. 2012. Energy value of wheat, barley, and wheat dried distillers grains with solubles for broiler chickens determined using the regression method. Poultry Science 91: 1928-1935.

BORGES JBS et al. 2019. Effects of polyunsaturated fatty acids (PUFA) supplementation on reproductive performance of beef heifers submitted to fixed-time artificial insemination (FTAI) protocol. Acta Scientiae Veterinariae 47: 1–6.

CAHUI N. 2019. Eficiencia productiva y reproductiva en la crianza comercial de cuyes (Cavia porcellus L.) en dos zonas ecológicas. Revista de Investigaciones de La Escuela de Posgrado 8: 986–996.

CAMINO J & HIDALGO V. 2014. Ealuación de dos genotipos de cuyes (Cavia porcellus) alimentados con concentrado y exclusión de forrraje verde. Rev Inv Vet Perú 25: 190–197.

CARBAJAL CHAVES CS. 2015. Evaluación preliminar de tres alimentos balanceados para cuyes (Cavia porcellus) en acabado en el Valle del Mantaro. TCC (Ingeniero Zootecnista) Lima: Universidad Nacional Agraria La Molina. 78p.

CARCELÉN F et al. 2021. Effect of probiotics administration at different levels on the productive parameters of guinea pigs for fattening (Cavia porcellus). Open Veterinary Journal 11: 222–227.

CARDONA JL et al. 2020. Importancia de la alimentación en el sistema productivo del cuy. Mosquera: AGROSAVIA. 104p.

CASTRO HP. 2002. Sistemas de crianza de cuyes a nivel familiar-comercial en el sector Rural. Utah: Benson Agriculture and Food Institute. 29p.

CHAUCA L et al. 2005. Generación de líneas mejoradas de cuyes de alta productividad. Buenos Aires: INCAGRO. 165p.

COLLADO-FERNANDEZ E et al. 2012. Metabolism throughout follicle and oocyte development in mammals. International Journal of Developmental Biology 56: 799–808.

CZARNECKI R & ADAMSKI M. 2016. Factors influencing litter size and birthweight in the newborn long-haired guinea pigs (Cavia aperea f. porcellus). Journal of Applied Animal Research 44: 71–76.

DAVIS TC & WHITE RR. 2020. Breeding animals to feed people: The many roles of animal reproduction in ensuring global food security. Theriogenology 150: 27–33.

DE BOND JAP & SMITH JT. 2014. Kisspeptin and energy balance in reproduction. Reproduction 147: 53–63.

DHONDT AA. 2001. Trade-offs between reproduction and survival in Tits. ARDEA 89: 155–166.

EDELL AS et al. 2019. Retrospective analysis of risk factors, clinical features, and prognostic indicators for urolithiasis in guinea pigs: 158 cases (2009–2019). JAVMA 260: S 5–100.

ELIAS AA et al. 2016. Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction. Reproductive Sciences 23: 219–227.

FENWICK MA et al. 2008. Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct. Reproduction Research 135: 63–75.

FLORES LPC. 2021. Evaluación del crecimiento compensatorio en el cuy (Cavia porcellus). Tesis (Profesional de Médico Veterinario) Lima: Universidad Nacional Mayor de San Marcos. 47p.

FRADETTE K et al. 2003. Conventional and robust paired and independent-samples t tests: Type I error and power rates. Journal of Modern Applied Statistical Methods 2: 481–496.

GONZÁLEZ-VEGA JC et al. 2011. Amino acid digestibility in heated soybean meal fed to growing pigs. J Anim Sci 89: 3617–3625.

GOOGLE EARTH. 2023. El globo terráqueo más completo. Programa de Computadora. Available at: https://earth.google.com/web/search/Marangani/@-14.3572185,-1.16956235,3702.58308391a,2277.17283186d,35y, 323.96960468h,45t,0r/data=CigiJgokCUfJpZehoiXAEQDmUKMPCjHAGbLv5Su6NVHAIc8ZoRZ3MlPA

GUERRERO AE et al. 2020. Influence of litter size at birth on productive parameters in guinea pigs (Cavia porcellus). Animals 10: 2059.

GURR MI. 1980. Animal models for the study of energy balance. Proc. Nutr. Soc. 39: 219–225.

HARDOUIN J et al. 2003. Mini-livestock breeding with indigenous species in the tropics. Livestock Research for Rural Development 15: 1–5.

HERRERA E et al. 2022. Meat quality of guinea pig (Cavia porcellus) fed with black soldier fly larvae meal (Hermetia illucens) as a protein source. Sustainability 1292: 15p.

HOME OFFICE. 2014. Code of Practice for the Housing and Care of Animals Bred, Supplied or Used for Scientific Purposes. Animals in Science Regulation Unit 21: 8p.

IPSA E et al. 2019. Growth Hormone and Insulin-Like Growth Factor Action in Reproductive Tissues. Frontiers in Endocrinology 10: 1–14.

JAKOBSDOTTIR G et al. 2013. Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum. The British Journal of Nutrition 110: 1565–1572.

JEANNIARD-DU-DOT T et al. 2017. Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals. PLoS ONE 12: e0174001.

KADAKIA R & JOSEFSON J. 2016. The Relationship of Insulin-Like Growth Factor 2 to Fetal Growth and Adiposity. Hormone Research in Paediatrics 85: 75–82.

KAUFFMAN AS et al. 2010. Critical periods of susceptibility to short-term energy challenge during pregnancy: Impact on fertility and offspring development. Physiology and Behavior 99: 100–108.

KAWASAKI K et al. 2015. Transfer of blood urea nitrogen to cecal microbial nitrogen is increased by fructo-oligosaccharide feeding in guinea pigs. Animal Science Journal 86: 77–82.

KROEGER SB et al. 2018. Cumulative reproductive costs on current reproduction in a wild polytocous mammal. Ecology and Evolution 8: 11543–11553.

LAMMERS PJ et al. 2009. Reducing food insecurity in developing countries through meat production: The potential of the guinea pig (Cavia porcellus). Renewable Agriculture and Food Systems 24: 155–162.

LETELIER C et al. 2008. Glucogenic supply increases ovulation rate by modifying follicle recruitment and subsequent development of preovulatory follicles without effects on ghrelin secretion. Reproduction 136: 65–72.

LOWRY R. 2019. VassarStats: Website for Statistical Computation. New York: Vassar College.

MEIYU QI et al. 2011. Insulin-like Growth Factor-I (IGF-I) in Reproduction System of Female Bovine. Journal of Northeast Agricultural University 18: 84–87.

MEZA GA et al. 2014. Mejora de engorde de cuyes (Cavia porcellus L.) a base de gramíneas y forrajeras arbustivas tropicales en la zona de Quevedo, Ecuador. IDESIA 32: 75–80.

MORALES E. 1994. The Guinea Pig in the Andean Economy: From Household Animal to Market Commodity. Latin American Research Review 29: 129–142.

NEMETH M et al. 2017. Reproductive performance and gestational effort in relation to dietary fatty acids in guinea pigs. Journal of Animal Science and Biotechnology 8: 1–11.

NEMETH M et al. 2014. Effects of diets high in unsaturated Fatty acids on socially induced stress responses in Guinea pigs. PloS One 9: e116292.

NEVIN CL et al. 2018. Maternal nutrient restriction in guinea pigs as an animal model for studying growth-restricted offspring with postnatal catch-up growth. Am J Physiol Regul Integr Comp Physiol 314: 647–654.

NIETO-ESCANDÓN PE et al. 2023. Assessment of different diets in the productive behavior of native guinea pigs (Cavia porcellus) from the Andes of Ecuador. Revista Científica, FCV-LUZ 33: e33259.

NRC. 1995. Nutrient Requirements of Laboratory Animals (Fourth Rev). National Academies of Sciences.

OLAZÁBAL J et al. 2019. Deficiencia de vitamina C como causa de mortalidad y morbilidad en cuyes de crianza intensiva y su tratamiento. Rev Inv Vet Perú 30: 1718–1723.

OLMEDO SP. 2015. Utilización de diferentes niveles de ensilaje de maíz en la alimentación de cuyes en la etapa de crecimiento y engorde. Trabajo de Titulación (Ingeniero Zootecnista). Riobamba: Escuela Superior Tecnológica de Chimborazo. 88p.

PAREDES M & DÍAZ J. 2023. Effect dietary vitamins and minerals premix levels on the productive performance of fattening guinea pigs. Revista de Investigaciones Veterinarias Del Peru 34: e24599.

PAREDES M et al. 2020. Semen characteristics and reproductive performance of native and improved guinea pigs in reciprocal crossing. Spermova 10: 11–17.

PAREDES M et al. 2021. Effects of five levels of dietary electrolyte balance on growth, carcass characteristics and blood serum metabolites of guinea pig (Cavia porcellus). Revista de Investigaciones Veterinarias Del Perú 32: e20018.

PAREDES-LÓPEZ DM et al. 2023. Effect of Morinda citrifolia fruit powder on physiological and productive performance of Cavia porcellus. Frontiers in Veterinary Science 10: 1134138.

PETHICK DW et al. 2011. Current and future issues facing red meat quality in a competitive market and how to manage continuous improvement. Animal Production Science 51: 13–18.

POSADA SL et al. 2015. Effect of genetic line and sex on growth in guinea pigs (Cavia porcellus). Livestock Research for Rural Development 27: 1–6.

RAMALHO-SANTOS J et al. 2009. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Human Reproduction Update 15: 553–572.

RATANPAUL V et al. 2019. Review: Effects of fibre, grain starch digestion rate and the ileal brake on voluntary feed intake in pigs. Animal 13: 2745–2754.

REDMER DA et al. 2004. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domestic Animal Endocrinology 27: 199–217.

REYNAGA MF et al. 2020. Sistemas de alimentación mixta e integral en la etapa de crecimiento de cuyes (Cavia porcellus) de las razas Perú, Andina e Inti. Revista de Investigaciones Veterinarias Del Peru 31: e18173.

RODRÍGUEZ H et al. 2015. Características Maternales al Nacimiento y Destete en Cuyes de la Costa Central del Perú. Revista de Investigaciones Veterinarias Del Perú 26: 77–85.

ROJAS DA et al. 2021. Efecto de la suplementación de concentrado fibroso sobre el rendimiento reproductivo de alpacas en altiplano peruano. Rev Inv Vet Perú 32: e20926.

ROSENFELD SA. 2008. Delicious guinea pigs: Seasonality studies and the use of fat in the pre-Columbian Andean diet. Quaternary International 180: 127–134.

SAKAGUCHI E. 2003. Digestive strategies of small hindgut fermenters. Animal Science Journal 74: 327–337.

SAMPAT AM et al. 2021. Valuing economic impact reductions of nutrient pollution from livestock waste. Resources, Conservation and Recycling 164: 105199.

SÁNCHEZ-MACÍAS D et al. 2018. Guinea pig for meat production: A systematic review of factors affecting the production, carcass and meat quality. Meat Science 143: 165–176.

SFERRUZZI-PERRI AN et al. 2007. Early treatment of the pregnant guinea pig with IGFs promotes placental transport and nutrient partitioning near term. American Journal of Physiology - Endocrinology and Metabolism 292: 668–676.

SHAH MA et al. 2017. Chickpea Feeding Promotes Weight Gain in Guinea Pigs. Research Journal for Veterinary Practitioners 4: 7–10.

SIKIMINYWA KL et al. 2016. Breeding of guinea-pig (Cavia porcellus, L. 1758) for meat production in Butembo, Democratic Republic of Congo: Literature review and breeding scheme. Revue Africaine de Santé et de Productions Animales 11: 75-83.

SLIWOWSKA JH et al. 2015. Insulin: its Role in the Central Control of Reproduction. Physiol Behav 0: 197–206.

SMITH AL et al. 2007. Effect of piglet birth weight on weights at weaning and 42 days post weaning. Journal of Swine Health and Production 15: 213–218.

SUREK D et al. 2019. Impact of birth weight and daily weight gain during suckling on the weight gain of weaning piglets. Arq. Bras. Med. Vet. Zootec 71: 2034–2040.

SUTTON-MCDOWALL ML et al. 2010. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139: 685–695.

TENELEMA MC et al. 2016. 0833 Guinea pig carcass quality: Traditional diet vs. high quality diet. Journal of Animal Science 94: 399–400.

VELÁSQUEZ S et al. 2017. Efecto de Tres Tipos de Empadre y Dos Tipos de Alimentación sobre los Índices Reproductivos en Cuyes Criados en la Sierra Peruana. Rev Inv Vet Perú 28: 359–369.

VERNAY MY. 1987. Propionate absorption and metabolism in the rabbit hindgut. Gut 28: 1077–1083.

WEATHER SPARK. 2024. El clima y el tiempo promedio en todo el año en Sicuani Perú. Available at: https://es.weatherspark.com/y/25874/Clima-promedio-en-Sicuani-Per

WITKOWSKA A et al. 2017. The Effects of Diet on Anatomy, Physiology and Health in the Guinea Pig. Journal of Animal Health and Behavioural Science 1: 1–6.

YAMADA G et al. 2019. Comparison of productive parameters of two Guinea pig meat lines in the central coast of Peru. Revista de Investigaciones Veterinarias Del Peru 30: 240–246.

YUAN B et al. 2016. The role of glucose metabolism on porcine oocyte cytoplasmic maturation and its possible mechanisms. PLoS ONE 11: 1–15.

Downloads

Publicado

2024-12-18

Como Citar

HUANCA, Bernardo Roque; HIGUERA, Miguel Alan Churata; MACHACA, Regina Sumari; ARUQUIPA, José Eduardo Ramírez; BETANCUR, Heber Nehemias Chui. Concentrado fibroso no desempenho produtivo e reprodutivo de porquinhos-da-índia em criação familiar-comercial nos Andes. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 4, p. 661–671, 2024. DOI: 10.5965/223811712342024661. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/25373. Acesso em: 22 dez. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados