Polimorfismos de proteína do leite e haplótipos de caseína em gado Blanco Orejinegro da Colômbia

Autores

DOI:

https://doi.org/10.5965/223811712312024117

Palavras-chave:

beta-lactoglobulina, leite de vaca, variantes do gene CSN, proteínas do leite

Resumo

O objetivo foi determinar a variação genética nos genes CSN1S1, CSN2, CSN1S2, CSN3 e LGB em bovinos Blanco Orejinegro. 419 animais de 15 rebanhos foram genotipados com chips GGP Bovine 150 K (n= 70) e 50 K (n= 349). Foram obtidas informações de 43 SNPs nos genes mencionados e as variantes proteicas *B, *C e *D de αS1-CN; *A1, *A2, *B, *H2 e *F de β-CN; *A e *D de αS2-CN, *A, *A1, *B, *I e *H de κ-CN e *A, *B, *C, *D, *E, *F e *H de β-LG foram reconstruídas. As frequências alélicas e genotípicas foram estimadas para SNPs e para variantes de proteínas; o equilíbrio de Hardy-Weinberg e os valores de FST foram avaliados para cada um dos SNPs sob diferentes critérios de estruturação. Os valores de LD e as frequências haplotípicas foram estimados para as caseínas. As variantes mais frequentes foram CSN1S1*B (0.804), CSN2*A2 (0.509), CSN1S2*A (0.997), CSN3*A (0.679) e β-LG*B (0.657). Nenhuma das variantes apresentou desvios da HWE, mas o alelo CSN2*A2 apresentou uma leve tendência de aumento ao longo do tempo. Os valores de FST foram baixos (0.035) independentemente dos critérios de estruturação. Foram encontrados 28 haplótipos CSN1S1-CSN2-CSN1S2-CSN3, 22 deles com frequências <5%; os três mais frequentes foram BB-A1A2-AA-AA-AA-AA (16.6%), BB-A1A2-AA-AA-AA-AB (14.1%) e BB-A2A2-AA-AA-AA (10.1%). Foi relatado um bom potencial do gado BON para produzir leite de alta qualidade com valor funcional.

Downloads

Não há dados estatísticos.

Referências

AHMED AS et al. 2017. Milk protein polymorphisms and casein haplotypes in butana cattle. Journal of Applied Genetics 58 :261-271.

AL KALALDEH M et al. 2023. Detection of genomic regions that differentiate Bos indicus from Bos taurus ancestral breeds for milk yield in Indian crossbred cows. Frontiers in Genetics 13: 1082802.

AMAYA A et al. 2022. Selection indexes to optimise genetic and economic progress in colombian Blanco Orejinegro Cattle. Livestock Science 263: 105015.

ARDICLI S et al. 2018. Effect of STAT1, OLR1, CSN1S1, CSN1S2, and DGAT1 genes on milk yield and composition traits of Holstein breed. Revista Brasilera de Zootecnia 47: e20170247.

ARRIETA L et al. 2021. Enfermedad podal en bovinos: prevalencia y asociación con algunas variables. Revista de la Facultad de Medicina Veterinaria y Zootecnia 68: 66-74.

BARBOSA S et al. 2019. Genetic association of variations in the Kappa-Casein and β-Lactoglobulin genes with milk traits in Girolando cattle. Revista Brasileira de Saúde e Produção Animal 20: e0312019.

CAIVIO-NASNER S et al. 2021a. Diversity analysis, runs of homozygosity and genomic inbreeding reveal recent selection in Blanco Orejinegro cattle. Journal of Animal Breeding and Genetics 138: 613-627.

CAIVIO-NASNER S et al. 2021b. Frequency of genotypic markers for genetic disorders, colour, polledness, and major genes in Blanco Orejinegro cattle. Tropical Animal Health and Production 53: 546.

CAIVIO-NASNER S et al. 2021c. Genetic parameters and trends for reproductive traits in Blanco Orejinegro cattle from Colombia. Semina Ciências Agrárrias 42: 2523-2538.

CAROLI AM et al. 2009. Invited Review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. Journal of Dairy Science 92: 5335-5352.

CHESSA S et al. 2020. The effect of selection on casein genetic polymorphisms and haplotypes in Italian Holstein cattle. Italian Journal of Animal Science 19:833-839.

ČÍTEK J et al. 2023. CSN1S1 and LALBA polymorphisms and other factors influencing yield, composition, somatic cell score, and technological properties of cow’s milk. Animals 13: 2079.

DANDINE-ROULLAND C & PERDRY H. 2018. Genome-Wide data manipulation, association analysis and heritability estimates in R with gaston 1.5. Human Heredity 83: 6.

DULLIUS A et al. 2018. Whey Protein hydrolysates as a source of bioactive peptides for functional foods – biotechnological facilitation of industrial scale-up. Journal of Functional Foods 42: 58-74.

FARRELL HM et al. 2004. Nomenclature of the proteins of cows’ milk--sixth revision. Journal of Dairy Science 87: 1641-1674.

FITZGERALD R et al. 2020. Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods 64: 103636.

GAI N et al. 2021. Effect of Protein genotypes on physicochemical properties and protein functionality of bovine milk: A review. Foods 10: 2409.

GALLINAT JL et al. 2013. DNA-based identification of novel bovine casein gene variants. Journal of Dairy Science 96: 699-709.

LÓPEZ-HERRERA et al. 2001. Mecanismos moleculares de resistencia a las enfermedades vesiculares virales del ganado criollo colombiano blanco orejinegro (BON). Iatreia 14: 280.

HEWA NADUGALA B et al. 2022. The effect of casein genetic variants, glycosylation and phosphorylation on bovine milk protein structure, technological properties, nutrition and product manufacture. International Dairy Journal 133: 105440.

JAISWAL L & WORKU M. 2022. Recent perspective on cow’s milk allergy and dairy nutrition. Critical Reviews in Food Science and Nutrition 62: 7503-7517.

KETTO I et al. 2017. Effects of milk protein polymorphism and composition, casein micelle size and salt distribution on the milk coagulation properties in norwegian red cattle. International Dairy Journal 70: 55-64.

KIM Y et al. 2019. Alpha-Casein and Beta-Lactoglobulin from cow milk exhibit antioxidant activity: A plausible link to antiaging effects. Journal of Food Science 84: 3083-3090.

KOLENDA M & SITKOWSKA B. 2021. The Polymorphism in various milk protein genes in Polish Holstein-Friesian dairy cattle. Animals 11: 389.

KRUCHININ A et al. 2023. Effect of CSN3 gene polymorphism on the formation of milk gels induced by physical, chemical, and biotechnological factors. Foods 12: 1767.

KYSELOVÁ J et al. 2019. Physiochemical characteristics and fermentation ability of milk from Czech Fleckvieh cows are related to genetic polymorphisms of β-casein, κ-casein, and β-lactoglobulin. Asian-Australas Journal of Animal Sciences 32: 14-22.

LEÓN C et al. 2019. Genomic association study for adaptability traits in four Colombian cattle breeds. Genetics and Molecular Research 18: GMR18373.

LISSON M et al. 2013. Genetic variants of bovine β- and κ-Casein result in different immunoglobulin E-binding epitopes after in vitro gastrointestinal digestion. Journal of Dairy Science 96: 5532-5543.

LONDOÑO-GIL M et al. 2021. Genome-wide association study for growth traits in Blanco Orejinero (BON) cattle from Colombia. Livestock Science 243: 104366.

MACEDO L et al. 2020. Genomic Analysis of milk protein fractions in Brown Swiss cattle. Animals 10: 336.

MAHMOUDI P et al. 2020. A Meta-Analysis on association between CSN3 gene variants and milk yield and composition in cattle. Animal Genetics 51: 369-381.

MARTÍNEZ A et al. 2012a. Genetic footprints of Iberian cattle in America 500 years after the arrival of Columbus PLOS ONE 7: e49066.

MARTÍNEZ R et al. 2012b. Desempeño de toretes de las razas criollas Blanco Orejinegro y Romosinuano en prueba de crecimiento en pastoreo. Revista Colombiana de Ciencias Pecuarias 25: 36-45.

MARTÍNEZ R et al. 2012c. Eficiencia productiva de la raza BON en el trópico colombiano. 1.ed. ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA. Bogotá. Colombia

MOHAN G et al. 2021. Casein (CSN) gene variants and parity affect the milk protein traits in crossbred (Bos taurus x Bos indicus) cows in sub-tropical climate. Tropical Animal Health and Production 53: 289.

MUKESH M et al. 2022. Demographic pattern of A1/A2 beta casein variants indicates conservation of A2 type haplotype across native cattle breeds (Bos indicus) of India. 3 Biotech 12: 167.

MUNTEAN I et al. 2022. Predictive factors for oral immune modulation in cow milk allergy. Nutrients 14: 494.

NARANJO J et al. 2007. Detección de variantes alélicas de la kappa-caseína en bovinos Hartón del Valle. Acta Agronómica 56: 43-47.

PADILLA-DOVAL J et al. 2021. Análisis genético de cinco polimorfismos de nucleótido simple de caseínas lácteas obtenidos con chips genómicos en ganado Holstein de Antioquia, Colombia. Revista de la Facultad de Medicina Veterinaria y Zootecnia 68: 137-149.

PARADIS E. 2010. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26: 419-420.

PERNA A et al. 2016a. The Influence of casein haplotype on quality, coagulation, and yield traits of milk from Italian Holstein cows. Journal of Dairy Science 99: 3288-3294.

PERNA A et al. 2016b. The Influence of casein haplotype on morphometric characteristics of fat globules and fatty acid composition of milk in Italian Holstein cows. Journal of Dairy Science 99: 2512-2519.

RIVEROS D et al. 2022. Relación entre la hormona antimülleriana y la reserva ovárica en vacas donadoras Brahman y Blanco Orejinegro. Revista de Investigaciones Veterinarias del Perú 33: e21000.

POULSEN N et al. 2017. Novel genetic variation associated to CSN3 strongly affects rennet-induced milk coagulation. International Dairy Journal 71: 122-130.

PURCELL S et al. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81: 559-575.

ROCHA J et al. 2019. Tick burden in Bos taurus cattle and its relationship with heat stress in three agroecological zones in the tropics of Colombia. Parasites and Vectors 12: 73.

ROSERO-ALPALA J et al. 2011. Polimorfismo genético de beta-lactoglobulina y alphalactoalbúmina en el ganado criollo colombiano, mediante PCR-SSCP. Acta Agronómica 60: 339-346.

SANCHEZ M et al. 2020. Frequencies of milk protein variants and haplotypes estimated from genotypes of more than 1 million bulls and cows of 12 French cattle breeds. Journal of Dairy Science 103: 9124-9141.

SOLARTE E et al. 2009. Allelic frequencies of Kappa casein gene in Holstein breed in Nariño - Colombia. Livestock Research for Rural Development 21: 3.

THIRUVENGADAM M et al. 2021. β-Casomorphin: A complete health perspective. Food Chemistry 337: 127765.

VANVANHOSSOU S et al. 2021. First DNA sequencing in Beninese indigenous cattle breeds captures new milk protein variants. Genes 12: 1702.

VARGAS-BELLO-PÉREZ E et al. 2019. Bioactive peptides from milk: animal determinants and their implications in human health. Journal of Dairy Research 86: 136-144.

VIGOLO V et al. 2022. β-Casein Variants differently affect bulk milk mineral content, protein composition, and technological traits. International Dairy Journal 124: 105221.

VILLALOBOS-CORTÉS A et al. 2023. Characterization of casein variants in the Guaymi and Guabala breeds through a low-density chip arrangement. Journal of Applied Animal Research 51: 69-73.

ZEPEDA-BATISTA J et al. 2017. Potential influence of κ-casein and β-lactoglobulin genes in genetic association studies of milk quality traits. Asian-Australasian Journal of Animal Sciences 30: 1684-1688.

Downloads

Publicado

2024-04-01

Como Citar

HERNANDEZ-HERRERA, Darwin Y; RINCON-FLOREZ, Juan C; PULIDO-HOYOS M , Maryi N. Polimorfismos de proteína do leite e haplótipos de caseína em gado Blanco Orejinegro da Colômbia. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 1, p. 117–129, 2024. DOI: 10.5965/223811712312024117. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/24309. Acesso em: 22 dez. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados