Polimorfismos de proteína do leite e haplótipos de caseína em gado Blanco Orejinegro da Colômbia

Autores

DOI:

https://doi.org/10.5965/223811712312024117

Palavras-chave:

beta-lactoglobulina, leite de vaca, variantes do gene CSN, proteínas do leite

Resumo

O objetivo foi determinar a variação genética nos genes CSN1S1, CSN2, CSN1S2, CSN3 e LGB em bovinos Blanco Orejinegro. 419 animais de 15 rebanhos foram genotipados com chips GGP Bovine 150 K (n= 70) e 50 K (n= 349). Foram obtidas informações de 43 SNPs nos genes mencionados e as variantes proteicas *B, *C e *D de αS1-CN; *A1, *A2, *B, *H2 e *F de β-CN; *A e *D de αS2-CN, *A, *A1, *B, *I e *H de κ-CN e *A, *B, *C, *D, *E, *F e *H de β-LG foram reconstruídas. As frequências alélicas e genotípicas foram estimadas para SNPs e para variantes de proteínas; o equilíbrio de Hardy-Weinberg e os valores de FST foram avaliados para cada um dos SNPs sob diferentes critérios de estruturação. Os valores de LD e as frequências haplotípicas foram estimados para as caseínas. As variantes mais frequentes foram CSN1S1*B (0.804), CSN2*A2 (0.509), CSN1S2*A (0.997), CSN3*A (0.679) e β-LG*B (0.657). Nenhuma das variantes apresentou desvios da HWE, mas o alelo CSN2*A2 apresentou uma leve tendência de aumento ao longo do tempo. Os valores de FST foram baixos (0.035) independentemente dos critérios de estruturação. Foram encontrados 28 haplótipos CSN1S1-CSN2-CSN1S2-CSN3, 22 deles com frequências <5%; os três mais frequentes foram BB-A1A2-AA-AA-AA-AA (16.6%), BB-A1A2-AA-AA-AA-AB (14.1%) e BB-A2A2-AA-AA-AA (10.1%). Foi relatado um bom potencial do gado BON para produzir leite de alta qualidade com valor funcional.

Downloads

Não há dados estatísticos.

Biografia do Autor

Darwin Hernandez-Herrera, Universidad Nacional de Colombia, Palmira, Colombia.

.

Juan C Rincon Florez , Universidad Nacional de Colombia, Palmira, Colombia.

.

Maryi N Pulido Hoyos M , Universidad Nacional de Colombia, Palmira, Colombia.

.

Referências

AHMED AS et al. 2017. Milk protein polymorphisms and casein haplotypes in butana cattle. Journal of Applied Genetics 58 :261-271.

AL KALALDEH M et al. 2023. Detection of genomic regions that differentiate Bos indicus from Bos taurus ancestral breeds for milk yield in Indian crossbred cows. Frontiers in Genetics 13: 1082802.

AMAYA A et al. 2022. Selection indexes to optimise genetic and economic progress in colombian Blanco Orejinegro Cattle. Livestock Science 263: 105015.

ARDICLI S et al. 2018. Effect of STAT1, OLR1, CSN1S1, CSN1S2, and DGAT1 genes on milk yield and composition traits of Holstein breed. Revista Brasilera de Zootecnia 47: e20170247.

ARRIETA L et al. 2021. Enfermedad podal en bovinos: prevalencia y asociación con algunas variables. Revista de la Facultad de Medicina Veterinaria y Zootecnia 68: 66-74.

BARBOSA S et al. 2019. Genetic association of variations in the Kappa-Casein and β-Lactoglobulin genes with milk traits in Girolando cattle. Revista Brasileira de Saúde e Produção Animal 20: e0312019.

CAIVIO-NASNER S et al. 2021a. Diversity analysis, runs of homozygosity and genomic inbreeding reveal recent selection in Blanco Orejinegro cattle. Journal of Animal Breeding and Genetics 138: 613-627.

CAIVIO-NASNER S et al. 2021b. Frequency of genotypic markers for genetic disorders, colour, polledness, and major genes in Blanco Orejinegro cattle. Tropical Animal Health and Production 53: 546.

CAIVIO-NASNER S et al. 2021c. Genetic parameters and trends for reproductive traits in Blanco Orejinegro cattle from Colombia. Semina Ciências Agrárrias 42: 2523-2538.

CAROLI AM et al. 2009. Invited Review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. Journal of Dairy Science 92: 5335-5352.

CHESSA S et al. 2020. The effect of selection on casein genetic polymorphisms and haplotypes in Italian Holstein cattle. Italian Journal of Animal Science 19:833-839.

ČÍTEK J et al. 2023. CSN1S1 and LALBA polymorphisms and other factors influencing yield, composition, somatic cell score, and technological properties of cow’s milk. Animals 13: 2079.

DANDINE-ROULLAND C & PERDRY H. 2018. Genome-Wide data manipulation, association analysis and heritability estimates in R with gaston 1.5. Human Heredity 83: 6.

DULLIUS A et al. 2018. Whey Protein hydrolysates as a source of bioactive peptides for functional foods – biotechnological facilitation of industrial scale-up. Journal of Functional Foods 42: 58-74.

FARRELL HM et al. 2004. Nomenclature of the proteins of cows’ milk--sixth revision. Journal of Dairy Science 87: 1641-1674.

FITZGERALD R et al. 2020. Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods 64: 103636.

GAI N et al. 2021. Effect of Protein genotypes on physicochemical properties and protein functionality of bovine milk: A review. Foods 10: 2409.

GALLINAT JL et al. 2013. DNA-based identification of novel bovine casein gene variants. Journal of Dairy Science 96: 699-709.

LÓPEZ-HERRERA et al. 2001. Mecanismos moleculares de resistencia a las enfermedades vesiculares virales del ganado criollo colombiano blanco orejinegro (BON). Iatreia 14: 280.

HEWA NADUGALA B et al. 2022. The effect of casein genetic variants, glycosylation and phosphorylation on bovine milk protein structure, technological properties, nutrition and product manufacture. International Dairy Journal 133: 105440.

JAISWAL L & WORKU M. 2022. Recent perspective on cow’s milk allergy and dairy nutrition. Critical Reviews in Food Science and Nutrition 62: 7503-7517.

KETTO I et al. 2017. Effects of milk protein polymorphism and composition, casein micelle size and salt distribution on the milk coagulation properties in norwegian red cattle. International Dairy Journal 70: 55-64.

KIM Y et al. 2019. Alpha-Casein and Beta-Lactoglobulin from cow milk exhibit antioxidant activity: A plausible link to antiaging effects. Journal of Food Science 84: 3083-3090.

KOLENDA M & SITKOWSKA B. 2021. The Polymorphism in various milk protein genes in Polish Holstein-Friesian dairy cattle. Animals 11: 389.

KRUCHININ A et al. 2023. Effect of CSN3 gene polymorphism on the formation of milk gels induced by physical, chemical, and biotechnological factors. Foods 12: 1767.

KYSELOVÁ J et al. 2019. Physiochemical characteristics and fermentation ability of milk from Czech Fleckvieh cows are related to genetic polymorphisms of β-casein, κ-casein, and β-lactoglobulin. Asian-Australas Journal of Animal Sciences 32: 14-22.

LEÓN C et al. 2019. Genomic association study for adaptability traits in four Colombian cattle breeds. Genetics and Molecular Research 18: GMR18373.

LISSON M et al. 2013. Genetic variants of bovine β- and κ-Casein result in different immunoglobulin E-binding epitopes after in vitro gastrointestinal digestion. Journal of Dairy Science 96: 5532-5543.

LONDOÑO-GIL M et al. 2021. Genome-wide association study for growth traits in Blanco Orejinero (BON) cattle from Colombia. Livestock Science 243: 104366.

MACEDO L et al. 2020. Genomic Analysis of milk protein fractions in Brown Swiss cattle. Animals 10: 336.

MAHMOUDI P et al. 2020. A Meta-Analysis on association between CSN3 gene variants and milk yield and composition in cattle. Animal Genetics 51: 369-381.

MARTÍNEZ A et al. 2012a. Genetic footprints of Iberian cattle in America 500 years after the arrival of Columbus PLOS ONE 7: e49066.

MARTÍNEZ R et al. 2012b. Desempeño de toretes de las razas criollas Blanco Orejinegro y Romosinuano en prueba de crecimiento en pastoreo. Revista Colombiana de Ciencias Pecuarias 25: 36-45.

MARTÍNEZ R et al. 2012c. Eficiencia productiva de la raza BON en el trópico colombiano. 1.ed. ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA. Bogotá. Colombia

MOHAN G et al. 2021. Casein (CSN) gene variants and parity affect the milk protein traits in crossbred (Bos taurus x Bos indicus) cows in sub-tropical climate. Tropical Animal Health and Production 53: 289.

MUKESH M et al. 2022. Demographic pattern of A1/A2 beta casein variants indicates conservation of A2 type haplotype across native cattle breeds (Bos indicus) of India. 3 Biotech 12: 167.

MUNTEAN I et al. 2022. Predictive factors for oral immune modulation in cow milk allergy. Nutrients 14: 494.

NARANJO J et al. 2007. Detección de variantes alélicas de la kappa-caseína en bovinos Hartón del Valle. Acta Agronómica 56: 43-47.

PADILLA-DOVAL J et al. 2021. Análisis genético de cinco polimorfismos de nucleótido simple de caseínas lácteas obtenidos con chips genómicos en ganado Holstein de Antioquia, Colombia. Revista de la Facultad de Medicina Veterinaria y Zootecnia 68: 137-149.

PARADIS E. 2010. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26: 419-420.

PERNA A et al. 2016a. The Influence of casein haplotype on quality, coagulation, and yield traits of milk from Italian Holstein cows. Journal of Dairy Science 99: 3288-3294.

PERNA A et al. 2016b. The Influence of casein haplotype on morphometric characteristics of fat globules and fatty acid composition of milk in Italian Holstein cows. Journal of Dairy Science 99: 2512-2519.

RIVEROS D et al. 2022. Relación entre la hormona antimülleriana y la reserva ovárica en vacas donadoras Brahman y Blanco Orejinegro. Revista de Investigaciones Veterinarias del Perú 33: e21000.

POULSEN N et al. 2017. Novel genetic variation associated to CSN3 strongly affects rennet-induced milk coagulation. International Dairy Journal 71: 122-130.

PURCELL S et al. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81: 559-575.

ROCHA J et al. 2019. Tick burden in Bos taurus cattle and its relationship with heat stress in three agroecological zones in the tropics of Colombia. Parasites and Vectors 12: 73.

ROSERO-ALPALA J et al. 2011. Polimorfismo genético de beta-lactoglobulina y alphalactoalbúmina en el ganado criollo colombiano, mediante PCR-SSCP. Acta Agronómica 60: 339-346.

SANCHEZ M et al. 2020. Frequencies of milk protein variants and haplotypes estimated from genotypes of more than 1 million bulls and cows of 12 French cattle breeds. Journal of Dairy Science 103: 9124-9141.

SOLARTE E et al. 2009. Allelic frequencies of Kappa casein gene in Holstein breed in Nariño - Colombia. Livestock Research for Rural Development 21: 3.

THIRUVENGADAM M et al. 2021. β-Casomorphin: A complete health perspective. Food Chemistry 337: 127765.

VANVANHOSSOU S et al. 2021. First DNA sequencing in Beninese indigenous cattle breeds captures new milk protein variants. Genes 12: 1702.

VARGAS-BELLO-PÉREZ E et al. 2019. Bioactive peptides from milk: animal determinants and their implications in human health. Journal of Dairy Research 86: 136-144.

VIGOLO V et al. 2022. β-Casein Variants differently affect bulk milk mineral content, protein composition, and technological traits. International Dairy Journal 124: 105221.

VILLALOBOS-CORTÉS A et al. 2023. Characterization of casein variants in the Guaymi and Guabala breeds through a low-density chip arrangement. Journal of Applied Animal Research 51: 69-73.

ZEPEDA-BATISTA J et al. 2017. Potential influence of κ-casein and β-lactoglobulin genes in genetic association studies of milk quality traits. Asian-Australasian Journal of Animal Sciences 30: 1684-1688.

Downloads

Publicado

2024-04-01

Como Citar

HERNANDEZ-HERRERA, Darwin; FLOREZ , Juan C Rincon; HOYOS M , Maryi N Pulido. Polimorfismos de proteína do leite e haplótipos de caseína em gado Blanco Orejinegro da Colômbia. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 1, p. 117–129, 2024. DOI: 10.5965/223811712312024117. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/24309. Acesso em: 26 jun. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados