Effects of urban pollution on hematological parameters and defensive capacity of rainbow trout from the Chalhuanca River

Authors

DOI:

https://doi.org/10.5965/223811712342024642

Keywords:

Anthropogenic, salmon, stress

Abstract

Rainbow trout is essential in the Andean diet, especially in communities where water quality is essential for their health and growth. Our research focuses on how the environmental conditions of the Chalhuanca River affect the physical health, chronic stress, and immunological capacity of rainbow trout, and what the relationship of these effects is to food security in local communities. Juvenile trout from the Chalhuanca River were examined, collecting 36 samples at three points: before Cotaruse, after Caraibamba and passing Chalhuanca. The fish were measured, weighed and blood was drawn to evaluate components such as red and white blood cells, hemoglobin, hematocrit, glucose and cortisol. The ability of the fish to combat the E. coli bacteria was also analyzed and physicochemical and microbiological parameters of the water were measured. The results showed significant differences in trout health between areas. Chalhuanca trout presented worse body condition and hypochromic microcytic anemia (hemoglobin: 6.1 g/dL, hematocrit: 29%). Furthermore, a high proportion of chronic stress was observed in this area. Water quality also showed variations, with higher concentrations of fecal coliforms (1200 CFU/100 mL) and lower levels of dissolved oxygen (4.5 mg/L) in Chalhuanca, indicating a higher degree of contamination.

Downloads

Download data is not yet available.

References

ABD-HAMID M et al. 2015. Length-weight Relationship and Condition Factor of Fish Populations in Temengor Reservoir: Indication of Environmental Health. Sains Malaysiana, 44(1), 61–66. https://doi.org/10.17576/jsm-2015-4401-09

ALY S et al. 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunology 25: 128–136.

AMAEZE N et al. 2020. Comparative assessment of the acute toxicity, haematological and genotoxic effects of ten commonly used pesticides on the African Catfish, Clarias gariepinus Burchell 1822. Heliyon 6: e04768.

ARISMENDI I et al. 2011. Body condition indices as a rapid assessment of the abundance of introduced salmonids in oligotrophic lakes of southern Chile. Lake and Reservoir Management, 27(1), 61–69. https://doi.org/10.1080/07438141.2010.536617

BAKRIM S et al. 2018. Hemogram profile and interest of pre-donation hemoglobin measurement in blood donors in the northwest region of Morocco. Transfusion Clinique et Biologique 25: 35–43.

BOLEZA K et al. 2001. Hypercapnic hypoxia compromises bactericidal activity of fish anterior kidney cells against opportunistic environmental pathogens. Fish & Shellfish Immunology 11: 593–610.

CHOWDHURY A et al. 2013. Alteration of haematolocial parameters of ‘zeol fish’- Clarias batrachus exposed to malathion. Bangladesh Journal of Zoology 40: 183–188.

CIFUENTES R et al. 2012. Relación longitud-peso y factor de condición de los peces nativos del río San Pedro (cuenca del río Valdivia, Chile). Gayana (Concepción) 76: 86–100.

CLARK T et al. 2008. Calibration of a hand-held haemoglobin analyser for use on fish blood. Journal of Fish Biology 73: 2587–2595.

CORRÊA L et al. 2013. Hematological parameters of Hoplias malabaricus (Characiformes: Erythrinidae) parasitized by Monogenea in lagoons in Pirassununga, Brazil. Revista Brasileira de Parasitologia Veterinária 22: 457–462.

CURRIE A et al. 2022. Anemia in salmon aquaculture: Scotland as a case study. Aquaculture 546: 737313.

DE-ANDRADE V et al. 2004. Fish as bioindicators to assess the effects of pollution in two southern Brazilian rivers using the Comet assay and micronucleus test. Environmental and Molecular Mutagenesis 44: 459–468.

DENSMORE C et al. 2004. Immunomodulation and Disease Resistance in Postyearling Rainbow Trout Infected with Myxobolus cerebralis, the Causative Agent of Whirling Disease. Journal of Aquatic Animal Health 16: 73–82.

ESPOSITO G et al. 2024. Changes in blood serum parameters in farmed rainbow trout (Oncorhynchus mykiss) during a piscine lactococcosis outbreak. Journal of Fish Diseases 00: e13994.

FAJARDO C et al. 2022. Functional and Molecular Immune Response of Rainbow Trout (Oncorhynchus mykiss) Following Challenge with Yersinia ruckeri. International Journal of Molecular Sciences 23: 3096.

FIERRO C et al. 2024. Assessing the effect of β-glucan diets on innate immune response of tilapia macrophages against trichlorfon exposure: an in vitro study. Fish Physiology and Biochemistry 50: 527–541.

GARCÍA I et al. 2022. Rainbow trout integrated response after recovery from short-term acute hypoxia. Frontiers in Physiology 13: 14p.

GUPTA B et al. 2011. Condition factor, length-weight and length-length relationships of an endangered fish Ompok pabda (Hamilton 1822) (Siluriformes: Siluridae) from the River Gomti, a tributary of the River Ganga, India. Journal of Applied Ichthyology, 27(3), 962–964. https://doi.org/10.1111/j.1439-0426.2010.01625.x

HABIB S et al. 2023. Effect of Different Anaesthetics on Hematology and Blood Biochemistry of Labeo rohita. Aquaculture Studies 24: 6p.

HANANA H et al. 2021. Toxicity of representative mixture of five rare earth elements in juvenile rainbow trout (Oncorhynchus mykiss) juveniles. Environmental Science and Pollution Research, 28(22), 28263–28274. https://doi.org/10.1007/s11356-020-12218-5

HANNIBAL K & BISHOP MD. 2014. Chronic Stress, Cortisol Dysfunction, and Pain: A Psychoneuroendocrine Rationale for Stress Management in Pain Rehabilitation. Physical Therapy 94: 1816–1825.

HARTER T et al. 2015. Validation of the i-STAT and HemoCue systems for the analysis of blood parameters in the bar-headed goose, Anser indicus. Conservation Physiology 3: cov021.

HUANCARÉ R. 2014. Identificación histopatológica de lesiones inducidas por bioacumulación de metales pesados en branquias, hígado y músculo de trucha arcoíris (Oncorhynchus mykiss) de cultivo en etapa comercial de la laguna de Mamacocha, área de influencia minera, Cajamarca-Perú. Tesis (Médico Veterinario). Lima: Universidad Nacional Mayor de San Marcos.

JALALI M et al. 2009. Growth efficiency, body composition, survival and haematological changes in great sturgeon (Linnaeus, 1758) juveniles fed diets supplemented with different levels of Ergosan. Aquaculture Research 40: 804–809.

JENTOFT S et al. 2005. Effects of stress on growth, cortisol and glucose levels in non-domesticated Eurasian perch (Perca fluviatilis) and domesticated rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 141: 353–358.

KATALAY S & PARLAK H. 2004. The Effects of Pollution on Haematological Parameters of Black Goby (Gobius niger L., 1758) in Foça and Aliağa Bays. Su Ürünleri Dergisi 21: 113–117.

KHANNA D et al. 2007. Fish scales as bio-indicator of water quality of River Ganga. Environmental Monitoring and Assessment 134: 153–160.

LEMOS L et al. 2023. Cortisol as a Stress Indicator in Fish: Sampling Methods, Analytical Techniques, and Organic Pollutant Exposure Assessments. International Journal of Environmental Research and Public Health 20: 6237.

MADARO A et al. 2023. Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. Fish Physiology and Biochemistry 49: 97–116.

MARTINEZ M et al. 2009. Cortisol and Glucose: Reliable indicators of fish stress? Pan-American Journal of Aquatic Sciences 4: 158–178.

MATSON K et al. 2006. Capture Stress and the Bactericidal Competence of Blood and Plasma in Five Species of Tropical Birds. Physiological and Biochemical Zoology 79: 556–564.

MESHKINI S et al. 2012. Effects of chitosan on hematological parameters and stress resistance in rainbow trout (Oncorhynchus mykiss). Veterinary Research Forum: An International Quarterly Journal 3: 49–54.

MIZAEVA T et al. 2023. Antibacterial Activity of Rainbow Trout Plasma: In Vitro Assays and Proteomic Analysis. Animals 13: 3565.

MUSHTAQ S et al. 2016. Estimation of length-weight relationship and condition factor of Crossocheilus diplochilus (Heckel, 1838): A freshwater benthopelagic fish from Wular Lake in Kashmir Himalaya . International Journal of Fisheries and Aquatic Studie, 4(6), 522–525.

NABI N et al. 2022. Hematological and serum biochemical reference intervals of rainbow trout, Oncorhynchus mykiss cultured in Himalayan aquaculture: Morphology, morphometrics and quantification of peripheral blood cells. Saudi Journal of Biological Sciences 29: 2942–2957.

OMSA. 2022. Organización Mundial de Sanidad Animal. Código Sanitario para los Animales Acuáticos. Organización Mundial de Sanidad Animal. https://www.woah.org/es/que-hacemos/normas/codigos-y-manuales/acceso-en-linea-al-codigo-acuatico/

OVERLI O. 2005. Behavioral and Neuroendocrine Correlates of Selection for Stress Responsiveness in Rainbow Trout--a Review. Integrative and Comparative Biology 45: 463–474.

PALA E & DEY S. 2016. Microscopy and Microanalysis of Blood in a Snake Head Fish, Channa gachua Exposed to Environmental Pollution. Microscopy and Microanalysis 22: 39–47.

PALAMULENI L & AKOTH M. 2015. Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa. International Journal of Environmental Research and Public Health 12: 8619–8630.

PUCUHUARANGA L. 2019). Estudio de prefactibilidad para la instalación de una piscigranja de trucha arcoíris (Oncorhynchus mykiss) en la provincia de Junin anexo de Huamanrripa. Tesis (Ingeniero Agroindustrial). Lima: Universidad Nacional del Centro del Perú.

RAVICHANDRAN R et al. 2016. Impact of haematological characteristic alteration in tannery effluent treated fish channa punctatus. Int. J. Zool. Appl. Biosci 1: 72–75.

REINOSO D. 2017. Comparación del conteo diferencial de glóbulos blancos de la trucha arcoíris (Oncorhynchus mykiss), en las etapas juvenil y adulta, en una explotación piscícola, ubicada en el cantón Rumiñahui, Pichincha Ecuador. Trabajo de grado. (Médico Veterinario – Zootecnista). Quito: Universidad Central Del Ecuador.

RIBAS J et al. 2016. Effects of trophic exposure to diclofenac and dexamethasone on hematological parameters and immune response in freshwater fish. Environmental Toxicology and Chemistry 35: 975–982.

ROJAS P. 2005. Efecto de la dieta sobre los niveles plasmáticos de insulina y glucagón en trucha arco iris (Oncorhynchus mykiss) y dorada (Sparus aurata) y caracterizacion del transportador de glucosa de dorada. Tesis (Doctor en Biología). Barcelona: Universidad de Barcelona.

RUIZ N et al. 2024. Repeated hypoxic episodes allow hematological and physiological habituation in rainbow trout. Frontiers in Physiology 15: 11p.

SALAZAR R et al. 2009. Paraquat and temperature affect nonspecific immune response of Colossoma macropomum. Environmental Toxicology and Pharmacology 27: 321–326.

SAMARAS A & PAVLIDIS M. 2022. Fish Scales Produce Cortisol upon Stimulation with ACTH. Animals 12: 3510.

SHAH S. 2006. Hematological parameters in tenchTinca tinca after short term exposure to lead. Journal of Applied Toxicology 26: 223–228.

SHARMA R & BHAT R. 2015. Length-weight relationship, condition factor of rainbow trout (Oncorhynchus mykiss) from Kashmir waters. Annals of Biological Research 6: 25–29.

SIMONOT D & FARRELL A. 2007. Cardiac remodelling in rainbow trout Oncorhynchus mykiss Walbaum in response to phenylhydrazine-induced anaemia. Journal of Experimental Biology 210: 2574–2584.

STOSIK M et al. 2020. Immune Functions of Erythrocytes in Osteichthyes. Frontiers in Immunology 11: article 1914.

SUEIRO M & PALACIOS G. 2016. Immunological and health-state parameters in the Patagonian rockfish Sebastes oculatus. Their relation to chemical stressors and seasonal changes. Fish & Shellfish Immunology 48: 71–78.

TABREZ S et al. 2022. Water quality index, Labeo rohita, and Eichhornia crassipes: Suitable bio-indicators of river water pollution. Saudi Journal of Biological Sciences 29: 75–82.

TASLIMA K et al. 2022. Impacts of heavy metals on early development, growth and reproduction of fish – A review. Toxicology Reports 9: 858–868.

THOMAS Y et al. 2019. Effects of hypoxia on metabolic functions in marine organisms: Observed patterns and modelling assumptions within the context of Dynamic Energy Budget (DEB) theory. Journal of Sea Research 143: 231–242.

VAL M et al. 2006. Niveles séricos de hormonas esteroideas en poblaciones de trucha común (salmo trutta fario) como marcadores del grado de contaminación estrogénica de las aguas. Universidad de Valladolid

VERCAUTEREN M et al. 2022. Explorative study on scale cortisol accumulation in wild caught common dab (Limanda limanda). BMC Veterinary Research 18: 324.

VILLA R. 2021. Alimentación de trucha Arco Iris (Oncorhynchus mykiss) mediante ensilado químico de viseras de trucha en la fase de ceba. RevistaEIA 18: 1–10.

WANG Z et al. 2016. Transcriptome profiling analysis of rare minnow (Gobiocypris rarus) gills after waterborne cadmium exposure. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 19: 120–128.

ZHELEV Z et al. 2016. Morphological and hematological parameters of Carassius Gibelio (Pisces: Gyprinidae) in conditions of anthropogenic pollution in Southern Bulgaria. Use of hematological parameters as biomarkers. Trakia Journal of Science 14: 1–15.

ZUTSHI B et al. 2010. Alteration in hematology of Labeo rohita under stress of pollution from Lakes of Bangalore, Karnataka, India. Environmental Monitoring and Assessment 168: 11–19.

Published

2024-12-18

How to Cite

MELÉNDEZ FLORES, Keyro Alberto. Effects of urban pollution on hematological parameters and defensive capacity of rainbow trout from the Chalhuanca River. Revista de Ciências Agroveterinárias, Lages, v. 23, n. 4, p. 642–651, 2024. DOI: 10.5965/223811712342024642. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/25450. Acesso em: 21 dec. 2024.

Issue

Section

Research Article - Science of Animals and Derived Products