Fibrous concentrate on the productive and reproductive performance of guinea pigs in family -commercial breeding in the Andes

Authors

DOI:

https://doi.org/10.5965/223811712342024661

Keywords:

feeding concentrate, guinea pig familiar-commercial farm, productive performance, reproductive performance, weight gain

Abstract

Andean guinea pig traditionally fed with forages presents low productive and reproductive performance. The aim of this study was to evaluate the effects of fibrous concentrate on the reproductive and productive performance of guinea pigs. A sample of 110 female guinea pigs (963.1 ± 127.3 g) and 22 male guinea pigs (1209.9 ± 159.0 g) of the Peru breed was distributed in 22 breeding modules (1 male/5 females), of which 11 modules were fed with forage (control) and 11 modules with fibrous concentrate (experimental). Each module was a replication. The forage was whole oat hay, while the fibrous concentrate was a mixture made with chopped hay from the same oats, corn-soybean, vitamin-mineral supplement, common salt, and premix. Both groups received the same amounts of fresh alfalfa as a vitamin C source. Then, 92 young weaning cavies from the control group (248.8 ± 29.9 g) and 106 young cavies from the experimental group (350.5 ± 64.6 g) were fed with the same diets to evaluate their productive performance. The experimental group surpassed the control group in all the variables (p < 0.05): dry matter intake (81.2 ± 4.5 vs 77.9 ± 1.0 g/day), postpartum female weight (1394.0 ± 81.5 vs. 1161.4 ± 50.3 g), male weight (1479.8 ± 125.1 vs. 1287.6 ± 124.4), litter size (2.24 ± 0.45 vs. 1.89 ± 0.68), litter weight (415.1 ± 80.2 vs. 291.3 ± 37.8 g), weaning weight (350.5 ± 64.6 vs. 248.8 ± 29.9 g), weight gain at 60 days of rearing (9.59 ± 1.41 vs. 6.41 ± 0.69 g), and rearing time to commercial weight (60 vs. 105 days), respectively. The fibrous concentrate achieves better reproductive and productive performance than forage and may be a viable alternative for family-commercial breeding of guinea pigs in the Andes.

Downloads

Download data is not yet available.

References

ARAUJO M et al. 2018. Effects of protein levels on guinea pig on growth performance, nitrogen utilization, and nutritional composition of meat by guinea pigs. J Anim Sci 96: 260.

AUDZIJONYTE A & RICHARDS SA. 2018. The energetic cost of reproduction and its effect on optimal life-history strategies. The American Naturalist 192: 24p.

AYAGIRWE RBB et al. 2019. Phenotypic variability and typology of cavy (Cavia porcellus) production in the Democratic Republic of Congo (DRC). Genetics and Biodiversity Journal 3: 11–23.

BAKER DH. 2007. Lysine, arginine, and related amino acids: An introduction to the 6th amino acid assessment workshop. Journal of Nutrition 137: 1599-1601.

BELLO-PEREZ LA et al. 2020. Starch digestibility: Past, present, and future. Journal of de Science of Food and Agriculture 100: 5009–5016.

BOLARINWA OA & ADEOLA O. 2012. Energy value of wheat, barley, and wheat dried distillers grains with solubles for broiler chickens determined using the regression method. Poultry Science 91: 1928-1935.

BORGES JBS et al. 2019. Effects of polyunsaturated fatty acids (PUFA) supplementation on reproductive performance of beef heifers submitted to fixed-time artificial insemination (FTAI) protocol. Acta Scientiae Veterinariae 47: 1–6.

CAHUI N. 2019. Eficiencia productiva y reproductiva en la crianza comercial de cuyes (Cavia porcellus L.) en dos zonas ecológicas. Revista de Investigaciones de La Escuela de Posgrado 8: 986–996.

CAMINO J & HIDALGO V. 2014. Ealuación de dos genotipos de cuyes (Cavia porcellus) alimentados con concentrado y exclusión de forrraje verde. Rev Inv Vet Perú 25: 190–197.

CARBAJAL CHAVES CS. 2015. Evaluación preliminar de tres alimentos balanceados para cuyes (Cavia porcellus) en acabado en el Valle del Mantaro. TCC (Ingeniero Zootecnista) Lima: Universidad Nacional Agraria La Molina. 78p.

CARCELÉN F et al. 2021. Effect of probiotics administration at different levels on the productive parameters of guinea pigs for fattening (Cavia porcellus). Open Veterinary Journal 11: 222–227.

CARDONA JL et al. 2020. Importancia de la alimentación en el sistema productivo del cuy. Mosquera: AGROSAVIA. 104p.

CASTRO HP. 2002. Sistemas de crianza de cuyes a nivel familiar-comercial en el sector Rural. Utah: Benson Agriculture and Food Institute. 29p.

CHAUCA L et al. 2005. Generación de líneas mejoradas de cuyes de alta productividad. Buenos Aires: INCAGRO. 165p.

COLLADO-FERNANDEZ E et al. 2012. Metabolism throughout follicle and oocyte development in mammals. International Journal of Developmental Biology 56: 799–808.

CZARNECKI R & ADAMSKI M. 2016. Factors influencing litter size and birthweight in the newborn long-haired guinea pigs (Cavia aperea f. porcellus). Journal of Applied Animal Research 44: 71–76.

DAVIS TC & WHITE RR. 2020. Breeding animals to feed people: The many roles of animal reproduction in ensuring global food security. Theriogenology 150: 27–33.

DE BOND JAP & SMITH JT. 2014. Kisspeptin and energy balance in reproduction. Reproduction 147: 53–63.

DHONDT AA. 2001. Trade-offs between reproduction and survival in Tits. ARDEA 89: 155–166.

EDELL AS et al. 2019. Retrospective analysis of risk factors, clinical features, and prognostic indicators for urolithiasis in guinea pigs: 158 cases (2009–2019). JAVMA 260: S 5–100.

ELIAS AA et al. 2016. Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction. Reproductive Sciences 23: 219–227.

FENWICK MA et al. 2008. Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct. Reproduction Research 135: 63–75.

FLORES LPC. 2021. Evaluación del crecimiento compensatorio en el cuy (Cavia porcellus). Tesis (Profesional de Médico Veterinario) Lima: Universidad Nacional Mayor de San Marcos. 47p.

FRADETTE K et al. 2003. Conventional and robust paired and independent-samples t tests: Type I error and power rates. Journal of Modern Applied Statistical Methods 2: 481–496.

GONZÁLEZ-VEGA JC et al. 2011. Amino acid digestibility in heated soybean meal fed to growing pigs. J Anim Sci 89: 3617–3625.

GOOGLE EARTH. 2023. El globo terráqueo más completo. Programa de Computadora. Available at: https://earth.google.com/web/search/Marangani/@-14.3572185,-1.16956235,3702.58308391a,2277.17283186d,35y, 323.96960468h,45t,0r/data=CigiJgokCUfJpZehoiXAEQDmUKMPCjHAGbLv5Su6NVHAIc8ZoRZ3MlPA

GUERRERO AE et al. 2020. Influence of litter size at birth on productive parameters in guinea pigs (Cavia porcellus). Animals 10: 2059.

GURR MI. 1980. Animal models for the study of energy balance. Proc. Nutr. Soc. 39: 219–225.

HARDOUIN J et al. 2003. Mini-livestock breeding with indigenous species in the tropics. Livestock Research for Rural Development 15: 1–5.

HERRERA E et al. 2022. Meat quality of guinea pig (Cavia porcellus) fed with black soldier fly larvae meal (Hermetia illucens) as a protein source. Sustainability 1292: 15p.

HOME OFFICE. 2014. Code of Practice for the Housing and Care of Animals Bred, Supplied or Used for Scientific Purposes. Animals in Science Regulation Unit 21: 8p.

IPSA E et al. 2019. Growth Hormone and Insulin-Like Growth Factor Action in Reproductive Tissues. Frontiers in Endocrinology 10: 1–14.

JAKOBSDOTTIR G et al. 2013. Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum. The British Journal of Nutrition 110: 1565–1572.

JEANNIARD-DU-DOT T et al. 2017. Reproductive success is energetically linked to foraging efficiency in Antarctic fur seals. PLoS ONE 12: e0174001.

KADAKIA R & JOSEFSON J. 2016. The Relationship of Insulin-Like Growth Factor 2 to Fetal Growth and Adiposity. Hormone Research in Paediatrics 85: 75–82.

KAUFFMAN AS et al. 2010. Critical periods of susceptibility to short-term energy challenge during pregnancy: Impact on fertility and offspring development. Physiology and Behavior 99: 100–108.

KAWASAKI K et al. 2015. Transfer of blood urea nitrogen to cecal microbial nitrogen is increased by fructo-oligosaccharide feeding in guinea pigs. Animal Science Journal 86: 77–82.

KROEGER SB et al. 2018. Cumulative reproductive costs on current reproduction in a wild polytocous mammal. Ecology and Evolution 8: 11543–11553.

LAMMERS PJ et al. 2009. Reducing food insecurity in developing countries through meat production: The potential of the guinea pig (Cavia porcellus). Renewable Agriculture and Food Systems 24: 155–162.

LETELIER C et al. 2008. Glucogenic supply increases ovulation rate by modifying follicle recruitment and subsequent development of preovulatory follicles without effects on ghrelin secretion. Reproduction 136: 65–72.

LOWRY R. 2019. VassarStats: Website for Statistical Computation. New York: Vassar College.

MEIYU QI et al. 2011. Insulin-like Growth Factor-I (IGF-I) in Reproduction System of Female Bovine. Journal of Northeast Agricultural University 18: 84–87.

MEZA GA et al. 2014. Mejora de engorde de cuyes (Cavia porcellus L.) a base de gramíneas y forrajeras arbustivas tropicales en la zona de Quevedo, Ecuador. IDESIA 32: 75–80.

MORALES E. 1994. The Guinea Pig in the Andean Economy: From Household Animal to Market Commodity. Latin American Research Review 29: 129–142.

NEMETH M et al. 2017. Reproductive performance and gestational effort in relation to dietary fatty acids in guinea pigs. Journal of Animal Science and Biotechnology 8: 1–11.

NEMETH M et al. 2014. Effects of diets high in unsaturated Fatty acids on socially induced stress responses in Guinea pigs. PloS One 9: e116292.

NEVIN CL et al. 2018. Maternal nutrient restriction in guinea pigs as an animal model for studying growth-restricted offspring with postnatal catch-up growth. Am J Physiol Regul Integr Comp Physiol 314: 647–654.

NIETO-ESCANDÓN PE et al. 2023. Assessment of different diets in the productive behavior of native guinea pigs (Cavia porcellus) from the Andes of Ecuador. Revista Científica, FCV-LUZ 33: e33259.

NRC. 1995. Nutrient Requirements of Laboratory Animals (Fourth Rev). National Academies of Sciences.

OLAZÁBAL J et al. 2019. Deficiencia de vitamina C como causa de mortalidad y morbilidad en cuyes de crianza intensiva y su tratamiento. Rev Inv Vet Perú 30: 1718–1723.

OLMEDO SP. 2015. Utilización de diferentes niveles de ensilaje de maíz en la alimentación de cuyes en la etapa de crecimiento y engorde. Trabajo de Titulación (Ingeniero Zootecnista). Riobamba: Escuela Superior Tecnológica de Chimborazo. 88p.

PAREDES M & DÍAZ J. 2023. Effect dietary vitamins and minerals premix levels on the productive performance of fattening guinea pigs. Revista de Investigaciones Veterinarias Del Peru 34: e24599.

PAREDES M et al. 2020. Semen characteristics and reproductive performance of native and improved guinea pigs in reciprocal crossing. Spermova 10: 11–17.

PAREDES M et al. 2021. Effects of five levels of dietary electrolyte balance on growth, carcass characteristics and blood serum metabolites of guinea pig (Cavia porcellus). Revista de Investigaciones Veterinarias Del Perú 32: e20018.

PAREDES-LÓPEZ DM et al. 2023. Effect of Morinda citrifolia fruit powder on physiological and productive performance of Cavia porcellus. Frontiers in Veterinary Science 10: 1134138.

PETHICK DW et al. 2011. Current and future issues facing red meat quality in a competitive market and how to manage continuous improvement. Animal Production Science 51: 13–18.

POSADA SL et al. 2015. Effect of genetic line and sex on growth in guinea pigs (Cavia porcellus). Livestock Research for Rural Development 27: 1–6.

RAMALHO-SANTOS J et al. 2009. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Human Reproduction Update 15: 553–572.

RATANPAUL V et al. 2019. Review: Effects of fibre, grain starch digestion rate and the ileal brake on voluntary feed intake in pigs. Animal 13: 2745–2754.

REDMER DA et al. 2004. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domestic Animal Endocrinology 27: 199–217.

REYNAGA MF et al. 2020. Sistemas de alimentación mixta e integral en la etapa de crecimiento de cuyes (Cavia porcellus) de las razas Perú, Andina e Inti. Revista de Investigaciones Veterinarias Del Peru 31: e18173.

RODRÍGUEZ H et al. 2015. Características Maternales al Nacimiento y Destete en Cuyes de la Costa Central del Perú. Revista de Investigaciones Veterinarias Del Perú 26: 77–85.

ROJAS DA et al. 2021. Efecto de la suplementación de concentrado fibroso sobre el rendimiento reproductivo de alpacas en altiplano peruano. Rev Inv Vet Perú 32: e20926.

ROSENFELD SA. 2008. Delicious guinea pigs: Seasonality studies and the use of fat in the pre-Columbian Andean diet. Quaternary International 180: 127–134.

SAKAGUCHI E. 2003. Digestive strategies of small hindgut fermenters. Animal Science Journal 74: 327–337.

SAMPAT AM et al. 2021. Valuing economic impact reductions of nutrient pollution from livestock waste. Resources, Conservation and Recycling 164: 105199.

SÁNCHEZ-MACÍAS D et al. 2018. Guinea pig for meat production: A systematic review of factors affecting the production, carcass and meat quality. Meat Science 143: 165–176.

SFERRUZZI-PERRI AN et al. 2007. Early treatment of the pregnant guinea pig with IGFs promotes placental transport and nutrient partitioning near term. American Journal of Physiology - Endocrinology and Metabolism 292: 668–676.

SHAH MA et al. 2017. Chickpea Feeding Promotes Weight Gain in Guinea Pigs. Research Journal for Veterinary Practitioners 4: 7–10.

SIKIMINYWA KL et al. 2016. Breeding of guinea-pig (Cavia porcellus, L. 1758) for meat production in Butembo, Democratic Republic of Congo: Literature review and breeding scheme. Revue Africaine de Santé et de Productions Animales 11: 75-83.

SLIWOWSKA JH et al. 2015. Insulin: its Role in the Central Control of Reproduction. Physiol Behav 0: 197–206.

SMITH AL et al. 2007. Effect of piglet birth weight on weights at weaning and 42 days post weaning. Journal of Swine Health and Production 15: 213–218.

SUREK D et al. 2019. Impact of birth weight and daily weight gain during suckling on the weight gain of weaning piglets. Arq. Bras. Med. Vet. Zootec 71: 2034–2040.

SUTTON-MCDOWALL ML et al. 2010. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139: 685–695.

TENELEMA MC et al. 2016. 0833 Guinea pig carcass quality: Traditional diet vs. high quality diet. Journal of Animal Science 94: 399–400.

VELÁSQUEZ S et al. 2017. Efecto de Tres Tipos de Empadre y Dos Tipos de Alimentación sobre los Índices Reproductivos en Cuyes Criados en la Sierra Peruana. Rev Inv Vet Perú 28: 359–369.

VERNAY MY. 1987. Propionate absorption and metabolism in the rabbit hindgut. Gut 28: 1077–1083.

WEATHER SPARK. 2024. El clima y el tiempo promedio en todo el año en Sicuani Perú. Available at: https://es.weatherspark.com/y/25874/Clima-promedio-en-Sicuani-Per

WITKOWSKA A et al. 2017. The Effects of Diet on Anatomy, Physiology and Health in the Guinea Pig. Journal of Animal Health and Behavioural Science 1: 1–6.

YAMADA G et al. 2019. Comparison of productive parameters of two Guinea pig meat lines in the central coast of Peru. Revista de Investigaciones Veterinarias Del Peru 30: 240–246.

YUAN B et al. 2016. The role of glucose metabolism on porcine oocyte cytoplasmic maturation and its possible mechanisms. PLoS ONE 11: 1–15.

Downloads

Published

2024-12-18

How to Cite

HUANCA, Bernardo Roque; HIGUERA, Miguel Alan Churata; MACHACA, Regina Sumari; ARUQUIPA, José Eduardo Ramírez; BETANCUR, Heber Nehemias Chui. Fibrous concentrate on the productive and reproductive performance of guinea pigs in family -commercial breeding in the Andes . Revista de Ciências Agroveterinárias, Lages, v. 23, n. 4, p. 661–671, 2024. DOI: 10.5965/223811712342024661. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/25373. Acesso em: 21 dec. 2024.

Issue

Section

Research Article - Science of Animals and Derived Products