Timomodulina melhora as respostas vacinais contra Streptococcus agalactiae em tilápia-do-Nilo

Autores

DOI:

https://doi.org/10.5965/223811712132022282

Palavras-chave:

vacinas para peixes, imunoestimulante, extrato tímico, estreptococose

Resumo

A estreptococose causada pelo Streptococcus agalactiae é um grande problema econômico para a produção de tilápia-do-nilo Oreochromis niloticus em todo o mundo. As vacinas inativadas são consideradas um método eficiente para o controle da estreptococose. No entanto, durante o processo de vacinação o estresse durante o manejo dos peixes pode afetar sua resposta imune. Imunomoduladores como a timomodulina, atuam no sistema imunológico e podem melhorar as respostas vacinais. Assim, o objetivo deste estudo foi avaliar o efeito imunomodulador da timomodulina em O. niloticus vacinado contra S. agalactiae. Para isso, os peixes foram distribuídos em esquema fatorial (2x2x6), correspondendo a dois níveis de suplementação de timodulina (0,0 e 0,3%), dois tratamentos (solução salina tamponada com fosfato estéril e vacina S. agalactiae inativada). Inicialmente, os peixes receberam suplementação de timomodulina por 30 dias. Em seguida, os peixes foram vacinados por via intraperitoneal (i.p.) da vacina de S. agalactiae inativada pelo calor. 15 dias após a vacinação, todos os peixes foram desafiados i.p. com S. agalactiae e amostras de sangue foram coletadas aos 7, 14, 21 dias após a infecção (DPI). Os resultados revelaram que os peixes suplementados com timomodulina vacinados ou não desenvolveram melhor proteção contra S. agalactiae do que os peixes vacinados sem timomodulina. Além disso, os peixes vacinados e suplementados com timomodulina apresentaram altos níveis de anticorpos após 14 e 21 DPI, sugerindo que a timomodulina pode promover a resposta imune em tilápia-do-nilo.

Downloads

Não há dados estatísticos.

Referências

BILLER-TAKAHASHI J et al. 2013. Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887). Arquivo Brasileiro de Medicina Veterinária e Zootecnia 65: 1745-1751.

BRAGA PC et al. 1993. Thymomodulin stimulates phagocytosis in vitro by rat macrophages and human polymorphonuclear cells. Journal of Chemotherapy 5: 313-316.

BRICKNELL I & DALMO R. 2005. The use of immunostimulants in fish larval aquaculture. Fish and Shellfish Immunology 19: 457-472.

CHEN M et al. 2012. PCR detection and PFGE genotype analyses of streptococcal clinical isolates from tilapia in China. Veterinary Microbiology 159: 526-530.

CLAUDIANO GS et al. 2019. Hematological and immune changes in Piaractus mesopotamicus in the sepsis induced by Aeromonas hydrophila. Fish and Shellfish Immunology 88: 259-265.

DELPHINO MK et al. 2019. Economic appraisal of vaccination against Streptoccocus agalactiae in Nile tilapia farms in Brazil. Preventive Veterinary Medicine 162: 131-135.

EVANS J et al. 2005. Streptococcus agalactiae Vaccination and Infection Stress in Nile Tilapia, Oreochromis niloticus. Journal of Applied Aquaculture 16: 105-111.

FAO. 2020. Food and Agriculture Organization. The State of World Fisheries and Aquaculture (2020). Sustainability in action. Rome: FAO.

GALINA J et al. 2009. The use of immunostimulating herbs in fish. An overview of research. Fish Physiology and Biochemistry 35: 669-676.

GANNAM AL & SCHROCK RM. 1999. Immunostimulants in fish diets. Journal of Applied Aquaculture 9: 53–89.

GARACI E et al. 2000. Thymosin alpha 1 in the treatment of cancer: from basic research to clinical application. International Journal of Immunopharmacology 22: 1067-1076.

HADDEN JW. 1993. Immunostimulants. Immunology Today 14: 275-280.

KOUTTAB N et al. 1989. Thymomodulin: biological properties and clinical applications. Medical Oncology and Tumor Pharmacotherapy 6: 5-9.

KIRON V. 2012. Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science Technology 173: 111–133.

LOGAMBAL SM & MICHAEL RD. 2000. Immunostimulatory effect of azadirachtin in Oreochromis mossambicus (Peters). Indian Journal of Experimental Biology 38: 1092-1096.

MARCUSSO PF et al. 2015. Influence of temperature on Streptococcus agalactiae infection in Nile tilapia. Brazilian Journal of Veterinary Research and Animal Science 52: 57-62.

MIYABE FM et al. 2017. Systematic Review Evaluation of Vaccine Efficacy Against Streptococcus agalactiae in Fish. Annals of Vaccines and Immunization 3: 1013.

MOMMSEN T et al. 1999. Cortisol in teleost Dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries 9: 211-268.

MUNANG’ANDU HM et al. 2016. An overview of vaccination strategies and antigen delivery systems for Streptococcus agalactiae vaccines in Nile tilapia (Oreochromis niloticus). Vaccines 4: 48.

OLMOS S et al. 2006. Cytokines mediating inflammation in a model of secondary immunodeficiency in Wistar rats: immunomodulation triggered by thymomodulin. European Journal of Inflammation 2: 97-107.

PASNIK DJ et al. 2005. Duration of protective antibodies and correlation with survival in Nile tilapia Oreochromis niloticus following Streptococcus agalactiae vaccination. Diseases of aquatic organisms 2: 129-134.

PASNIK DJ et al. 2008. Influence of Tricaine Methanesulfonate on Streptococcus agalactiae Vaccination of Nile Tilapia (Oreochromis niloticus). Veterinary Research 2: 28-33.

PRETTO-GIORDANO L et al. 2010. Efficacy of an experimentally inactivated Streptococcus agalactiae vaccine in Nile tilapia (Oreochromis niloticus) reared in Brazil. Aquaculture Research 41: 1539–1544.

RAA J. 1996. The use of immunostimulatory substances in fish and shellfish farming. Reviews in Fish Biology and Fisheries 4: 229-288.

RAMOS-ESPINOZA FC et al. 2020a. A comparison of novel inactivation methods for production of a vaccine against Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. Aquaculture: e-735484.

RAMOS-ESPINOZA FC et al. 2020b. Efficacy of two adjuvants administrated with a novel hydrogen peroxide-inactivated vaccine against Streptococcus agalactiae in Nile tilapia fingerlings. Fish and Shellfish Immunology 105: 350-358.

RODRÍGUEZ FE et al. 2016. β-1, 3/1, 6-Glucan-supplemented diets antagonize immune inhibitory effects of hypoxia and enhance the immune response to a model vaccine. Fish and Shellfish Immunology 59: 36-45.

SALVADOR R et al. 2003. Isolation of Streptococcus spp. from Nile tilapia (Oreochromis niloticus) and quality of water in hapas nets in North Region of Parana State, Brazil. Ciências Agrárias 24: 35-42.

SONG SK et al. 2014. Prebiotics as immunostimulants in aquaculture: a review. Fish and Shellfish Immunology 40: 40-48.

SWAIN P et al. 2007. Serum antibody response of Indian major carp, Labeo rohita to three species of pathogenic bacteria; Aeromonas hydrophila, Edwardsiella tarda and Pseudomonas fluorescens. Veterinary Immunology and Immunopathology 117: 137-141.

TAFALLA C et al. 2013. Adjuvants and immunostimulants in fish vaccines: Current knowledge and future perspectives. Fish and Shellfish Immunology 35: 1740-1750.

VASUDEVA Y et al. 2006. Effect of Achyranthes aspera on the immunity and survival of Labeo rohita infected with Aeromonas hydrophila. Fish and Shellfish Immunology 20: 263-273.

VIJAYAN M et al. 1997. Metabolic Responses Associated with Confinement Stress in Tilapia: The Role of Cortisol. Comparative Biochemistry and Physiology 116: 89-95.

WANG Q et al. 2020. Cross-immunity in Nile tilapia vaccinated with Streptococcus agalactiae and Streptococcus iniae vaccines. Fish and Shellfish Immunology 97:382-389.

WHITTINGTON R et al. 2005. Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture 248: 217-225.

Downloads

Publicado

2022-10-19

Como Citar

SALVADOR, Rogério; MARCUSSO, Paulo Fernandes; CLAUDIANO, Gustavo Silva; MARINHO-NETO, Fausto Almeida; YUNIS-AGUINAGA, Jefferson; RAMOS-ESPINOZA, Fernando Carlos; CUEVA-QUIROZ, Victor Alexander; MORAES, Julieta Rodini Engracia de. Timomodulina melhora as respostas vacinais contra Streptococcus agalactiae em tilápia-do-Nilo. Revista de Ciências Agroveterinárias, Lages, v. 21, n. 3, p. 282–289, 2022. DOI: 10.5965/223811712132022282. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/22461. Acesso em: 28 mar. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados

Artigos mais lidos pelo mesmo(s) autor(es)