DETERMINAÇÃO DE COMPOSTOS FENÓLICOS POR LC-MS/MS E CAPACIDADE ANTIOXIDANTE DE ACEROLA EM TRÊS ESTÁDIOS DE MATURAÇÃO COMESTÍVEIS
DOI:
https://doi.org/10.5965/24473650412018096Palavras-chave:
Malpighia emarginata DC, Compostos bioativos, Amadurecimento,Resumo
Os frutos de acerola são reconhecidos principalmente por sua composição rica em vitamina C, no entanto, estes frutos apresentam outros compostos fitoquímicos responsáveis pela sua capacidade antioxidante, entre eles os compostos fenólicos. Neste sentido, este trabalho objetivou investigar compostos fenólicos por cromatografia líquida acoplada à espectrometria de massas (LC-MS/MS) e avaliar a capacidade antioxidante em frutos de acerola em três estádios de maturação comestíveis. Foram avaliados 33 compostos fenólicos, e destes, 16 foram quantificados, sendo os compostos majoritários a quercetina, ácido cafeico, kaempferol e isoramnetina. Os resultados para a capacidade antioxidante pelo o ensaio DPPH foram de 1117,71, 1120,40 e 963,26 mg Trolox g-1 em matéria seca para os frutos menos maduro, maduro e completamente maduro, respectivamente; e pelo ensaio FRAP, os valores foram de 400,87, 508,24 e 341,19 µmol Trolox g-1 em matéria seca para os frutos menos maduro, maduro e completamente maduro, respectivamente. Foi possível observar que o processo de maturação influenciou significativamente a concentração da maioria dos compostos fenólicos investigados bem como a capacidade antioxidante nos frutos de acerola, ocorrendo, de maneira geral, uma tendência de diminuição nestes teores com o avanço da maturação. No entanto, os resultados encontrados podem ser considerados expressivos sugerindo que os três estádios de maturação avaliados podem contribuir na ingestão diária de antioxidante naturais
Referências
AABY, K. et al. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chemistry, v. 132, p. 86-97, 2012.
AHMAD, N. et al. Characterization of free and conjugated phenolic compounds in fruits of selected wild plants. Food Chemistry, v. 190, p. 80–89, 2016.
ANANTACHOKE, N. et al. Thai fruits exhibit antioxidant activity and induction of antioxidant enzymes in HEK-293 cells. Evidence-Based Complementary and Alternative Medicine, v. 2016, p. 1–14, 2016.
ARNOUS, A.; MAKRIS, D. P.; KEFALAS, P. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. Journal of Food Composition and Analysis, v. 15, n. 6, p. 655–665, 2002.
BARBOZA, S. B. S. C.; TAVARES, E. D.; MELO, M. B. de. Instruções para o cultivo da acerola. Aracaju: EMBRAPA-CPATC, 1996. 42p. (EMBRAPA-CPATC. Circular Técnica. 6).
BATAGLION, G. A. et al. Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS. Food Chemistry, v.180, p.280-287, 2015.
BENZIE, I. F. F.; STRAIN, J. J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, v. 239, p. 70–76, 1996.
BOEING, J. S. et al. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal, v. 8, n. 1, p. 48, 2014.
BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, v. 28, n. 1, p. 25–30, 1995.
DE ASSIS, S. A. et al. Antioxidant activity, ascorbic acid and total phenol of exotic fruits occurring in Brazil. International journal of food sciences and nutrition, v. 60, n. 5, p. 439– 48, 2009.
DE LA ROSA, L.; ALVAREZ-PARILLA, E.; GONZÁLEZ-AGUIAR, G.A. Fruit and vegetable
phytochemicals. Wiley-Blackwell. 2010.
DE ROSSO, V. V. et al. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and açai (Euterpe oleracea Mart.) by HPLC-PDA-MS/MS. Journal of Food Composition and Analysis, v. 21, n. 4, p. 291–299, 2008.
DELVA, L.; SCHNEIDER, R. G. Acerola (Malpighia emarginata DC): production, postharvest handling, nutrition, and biological activity. Food Reviews International, v. 29, n. 2, p. 107–126, 2013a.
DELVA, L.; SCHNEIDER, R. G. Antioxidant activity and antimicrobial properties of phenolic extracts from acerola (Malpighia emarginata DC) fruit. International Journal of Food Science and Technology, v. 48, p. 1048–1056, 2013b.
DING, C.-K. et al. Metabolism of phenolic compounds during loquat fruit development. Journal of Agricultural and Food Chemistry, v. 49, p. 2883-2888, 2001.
FAWOLE, O. A.; OPARA, U. L. Changes in physical properties, chemical and elemental composition and antioxidant capacity of pomegranate (cv. Ruby) fruit at five maturity stages. Scientia Horticulturae, v. 150, p. 37-46, 2013.
GONÇALVES, A. E. de S. S.; LAJOLO, F. R.; GENOVESE, M. I. Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and and commercial frozen pulps. Journal of Agricultural and Food Chemistry, v. 58, p. 4666-4674, 2010.
GORDON, A. et al. Chemical characterization and evaluation of antioxidant properties of açaí fruits (Euterpe oleraceae Mart.) during ripening. Food Chemistry, v. 133, p. 256-263, 2012.
GRUZ, J. et al. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chemistry, v. 124, p. 271-277, 2011.
HURTADO-FERNANDEZ, E. et al. Merging a sensitive capillary electrophoresis-ultraviolet detection method with chemometric exploratory data analysis for the determination of phenolic acids and subsequent characterization of avocado fruit. Food Chemistry, v. 141, p. 3492–3503, 2013.
IOM. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Institute of Medicine. Washington: National Academy Press, 2001.
KIM, D. et al. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolics phytochemicals.
Journal of agricultural and food chemistry, v. 50, p. 3713–3717, 2002.
LEE, J.; DOSSETT, M.; FINN, C. E. Rubus fruit phenolic research: the good, the bad, and the confusing. Food Chemistry, v. 130, n. 4, p. 785–796, 2012.
LEFFA, D. D. et al. Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, v. 770, p. 144–152, 2014.
LIMA, V. L. A. G. et al. Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chemistry, v. 90, p. 565-568, 2005.
MARTINS, S. et al. Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnology Advances, v. 29, p. 365-373, 2011.
MEMON, A. F. et al. Simultaneous determination of quercetin, rutin, naringin, and naringenin in different fruits by capillary zone electrophoresis. Food Analytical Methods, v. 10, p. 83–91, 2017.
MEZADRI, T. et al. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. Journal of Food Composition and Analysis, v. 21, n. 4, p. 282–290, 2008.
NASCIMENTO, E. M. M. et al. HPLC and in vitro evaluation of antioxidant properties of fruit from Malpighia glabra (Malpighiaceae) at different stages of maturation. Food and Chemical Toxicology, v. 119, p. 457-463, 2018.
NUNES, R. S. et al. Antigenotoxicity and antioxidant activity of acerola fruit (Malpighia glabra
L.) at two stages of ripeness. Plant Foods for Human Nutrition, v. 66, n. 2, p. 129–135, 2011.
OLIVEIRA, L. S. et al. Antioxidant metabolism during fruit development of different acerola (Malpighia emarginata D.C) clones. Journal of Agricultural and Food Chemistry, v.60, p. 7957-7964, 2012.
PAZ, M. et al. Brazilian fruit pulps as functional foods and additives: evaluation of bioactive compounds. Food Chemistry, v. 172, p.462-468, 2015.
PRASANNA, V.; PRABHA; T. N.; THARANATHAN; R. N. Fruit ripening phenomena – an overview. Critical Reviews in Food Science and Nutrition, v. 47, p. 1-19, 2007.
RIGHETTO, A. M.; NETTO F. M.; CARRARO, F. Chemical composition and antioxidant activity of juices from mature and immature acerola (Malpighia emarginata DC). Food Science and Technology International, v. 11, p. 315-321, 2005.
RUFINO, M. D. S. M. et al. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, v. 121, n. 4, p. 996–1002, 2010.
SCHULZ, M. et al. Chemical composition, bioactive compounds and antioxidant capacity of juçara fruit (Euterpe edulis Martius) during ripening. Food Research International, v. 77, p. 125–131, 2015.
SERAGLIO, S. K. T. et al. Nutritional and bioactive potential of Myrtaceae fruits during ripening.
Food Chemistry, v. 239, p. 649–656, 2018.
TACO - Tabela Brasileira de Composição de Alimentos. 4. ed. Campinas: UNICAMP/NEPA, 2011. 161 p. Disponível em: <http://www.unicamp.br/nepa/taco/tabela.php?ativo=tabela>. Acesso em: 28 out. 2018.
Downloads
Publicado
Edição
Seção
Licença
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.
Termos da licença:
-
Atribuição — Você deve dar os devidos créditos , fornecer um link para a licença e indicar se foram feitas alterações . Você pode fazê-lo de qualquer maneira razoável, mas não de forma que sugira que o licenciante endossa você ou seu uso.
-
NonCommercial — Você não pode usar o material para fins comerciais .
- Sem restrições adicionais — Você não pode aplicar termos legais ou medidas tecnológicas que restrinjam legalmente outras pessoas de fazer qualquer coisa que a licença permita.