Genetic characterization of four generations of Oreochromis niloticus subjected to individual selection in southern Brazil

Authors

DOI:

https://doi.org/10.5965/223811712422025369

Keywords:

Tilapia, Microsatellite markers, Breeding program, Inbreeding, Allele frequency

Abstract

The process of artificial selection can lead to a rapid decrease in genetic variability across generations, consequently reducing the response to selection in a breeding program. Therefore, understanding the genetic characteristics of the breeding stock is essential, making it important to assess inbreeding and allele frequency changes over generations. In this context, the present study performed the genotypic characterization of four generations of Nile tilapia subjected to individual selection for final weight, aiming to evaluate inbreeding and changes in allele frequencies across generations. The first four generations of GIFT tilapia from the Epagri breeding program were characterized using 11 microsatellite markers. There was only a 5.2% reduction in the total number of alleles across generations. The average number of effective alleles per marker remained similar across generations (4.07 ± 0.4 for G1; 3.88 for G2; 3.86 for G3; and 3.87 for G4). Overall, observed heterozygosity was higher than expected heterozygosity, leading to FIS values of -0.042, 0.027, -0.042, and -0.017 for G1, G2, G3, and G4, respectively. Therefore, individual selection did not result in significant losses of genetic variability across generations; however, significant changes in allele frequencies were observed at some loci, which genetically differentiated the generations from one another. Genotypes clustered by the Bayesian method identified 9 groups in G1, 16 groups in G2, and 12 groups in both G3 and G4. Thus, using the microsatellite markers, it was possible to genetically characterize the breeding stocks of four generations of the Epagri tilapia breeding program, and an adequate maintenance of genetic variability in the stock was observed, allowing for the program's continuity. However, important changes in allele frequencies were also detected in the evaluated markers as a result of the applied selection.

Downloads

Download data is not yet available.

References

AHMED SM et al. 2023. Population structure and genetic diversity of Nile tilapia (Oreochromis niloticus) using microsatellite markers from selected water bodies in southwest Ethiopia. Veterinary Medicine and Science 9: 2095-2106.

ALI FS et al. 2017. Genetic improvement of farmed Nile tilapia (Oreochromis niloticus) through selective breeding in Egypt. International Journal of Fisheries and Aquatic Studies 5: 395-401.

ALI FS et al. 2024. Genetic Diversity Assessment and Association Analysis of Body Characters of the Nile tilapia (Oreochromis niloticus) using AFLP. Egyptian Journal of Aquatic Biology & Fisheries 28: 843 – 858.

ALJANABI SM & MARTINEZ I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25: 4692-4693.

BAGGIO RA et al. 2016. Identifying Nile tilapia strains and their hybrids farmed in Brazil using microsatellite markers. Pesquisa Agropecuária Brasileira 51: 1744-1750.

BARROSO R et al. 2016. Gerenciamento genético da tilápia nos cultivos comerciais. Palmas: Embrapa Pesca e Aquicultura. Disponível em: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1036709. Acesso em: 15 out. 2019.

BEHRENDS LL et al. 1996. Cold tolerance in maternal mouthbrooding tilapias: heritability estimates and correlated growth responses at suboptimal temperatures. In The Third International Symposium on Tilapia in Aquaculture 41: 257.

BENTSEN HB et al. 2017. Genetic improvement of farmed tilapias: response to five generations of selection for increased body weight at harvest in Oreochromis niloticus and the further impact of the project. Aquaculture 468: 206-217.

BRIÑEZ BR et al. 2011. Genetic diversity of six populations of red hybrid tilapia, using microsatellites genetic markers. Revista MVZ Córdoba 16: 2491-2498.

CNAANI A et al. 2003. Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture 223: 117-128.

CNAANI A et al. 2004. Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid. Molecular Genetics and Genomics 272: 162-172.

DIAS MA et al. 2016. Evaluation of the genetic diversity of microsatellite markers among four strains of Oreochromis niloticus. Animal Genetics 47: 345-353.

FALUSH D et al. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567-1587.

FAO. 2024. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome. Disponível em: https://doi.org/10.4060/cd0683en.

GJEDREM T et al. 2012. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 350-353: 117-129.

GU D et al. 2014. Genetic diversity of invasive Oreochromis spp. (tilapia) populations in Guangdong province of China using microsatellite markers. Biochemical Systematics and Ecology 55: 198-204.

HAMMER Ø et al. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.

HASSANIEN HA & GILBEY J. 2005. Genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus) revealed by DNA microsatellites. Aquaculture Research 36: 1450-1457.

HUI AI et al. 2022. Mapping QTL for cold-tolerance trait in a GIFT-derived tilapia line by ddRAD-seq. Aquaculture 556: 738273.

JOSHI D et al. 2017. Microsatellite markers and their application in fisheries. International Journal of Advances in Agricultural Science and Technology 4: 67-104.

LIND CE et al. 2020. Selective breeding in fish and conservation of genetic resources for aquaculture. Reviews in Aquaculture 12: 969-983.

MAMOON A et al. 2024. Investigating Nuclear DNA Microsatellites in the Nile Tilapia (Oreochromis niloticus): Insights into Association Genetics. Egyptian Journal of Aquatic Biology & Fisheries 28: 661–675.

MELO DC et al. 2006. Caracterização genética de seis plantéis comerciais de tilápia (Oreochromis) utilizando marcadores microssatélites. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 58: 87-93.

MONTOYA-LÓPEZ AF et al. 2019. Genetic diversity of four broodstocks of tilapia (Oreochromis sp.) from Antioquia, Colombia. Revista Colombiana de Ciências Pecuárias 32: 201-213.

MOREIRA AA et al. 2007. Variabilidade genética de duas variedades de tilápia nilótica por meio de marcadores microssatélites. Pesquisa Agropecuária Brasileira 42: 521-526.

NGUYEN NH et al. 2022. Genetic improvement of Nile tilapia (Oreochromis niloticus) in Malaysia: Current status and future prospects. Aquaculture Reports 23: 101031.

NITZAN T et al. 2016. Maternal effects in the inheritance of cold tolerance in blue tilapia (Oreochromis aureus). Environmental Biology of Fishes 99: 975-981.

OLIVEIRA CALD et al. 2015. Avaliação genética de tilápias-do-nilo durante cinco anos de seleção. Pesquisa Agropecuária Brasileira 50: 871-877.

PEAKALL R & SMOUSE PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.

PEIXE-BR. 2024. Anuário 2024 Peixe BR da Piscicultura. Disponível em: https://www.peixebr.com.br/anuario-2024/. Acesso em: 10 out. 2024.

PETERSEN RL et al. 2012. Análise da diversidade genética de tilápias cultivadas no estado de Santa Catarina (Brasil) utilizando marcadores microssatélites. Boletim do Instituto de Pesca 38: 313-321.

PONZONI RW et al. 2011. Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Reviews in Aquaculture 3: 27-41.

PRITCHARD JK et al. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

ROBLEDO D et al. 2018. Applications of genotyping by sequencing in aquaculture breeding and genetics. Reviews in Aquaculture 10: 670-682.

RODRIGUEZ-RODRIGUEZ MP et al. 2013. Caracterização genética de gerações de tilápia GIFT por meio de marcadores microssatélites. Pesquisa Agropecuária Brasileira 48: 1385-1393.

ROMANA-EGUIA MR et al. 2004. Genetic diversity in farmed Asian Nile and red hybrid tilapia stocks evaluated from microsatellite and mitochondrial DNA analysis. Aquaculture 236: 131-150.

ROMANA-EGUIA MR et al. 2005. Genetic changes during mass selection for growth in Nile tilapia, Oreochromis niloticus (L.), assessed by microsatellites. Aquaculture Research 36: 69-78.

SCHUELKE M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233-234.

SILVA BC et al. 2019. Ganho genético após uma geração de seleção individual para peso final e variáveis morfométricas em tilápia. Revista de Ciências Agroveterinárias 18: 103-110.

SILVA BC et al. 2020. Genetic characterization of selected Nile tilapia in Santa Catarina. Semina: Ciências Agrárias 41: 1739-1754.

SILVA BC et al. 2021. Cold tolerance and performance of selected Nile tilapia for suboptimal temperatures. Aquaculture Research 52: 1071-1077.

SILVA BC et al. 2023. Tilápia Epagri SC 04. Florianópolis: Epagri. Disponível em: https://sistemas.epagri.sc.gov.br/semob/consulta.action?subFuncao=consultaPublicacoesDetalhe&cdDoc=57664. Acesso em: 10 out. 2024.

SILVA BC et al. 2024. Monocultivo de tilápia em viveiros escavados em Santa Catarina. Florianópolis: Epagri. 126p. (Epagri. Sistemas de Produção 52).

THODESEN J et al. 2013. Genetic improvement of tilapias in China: Genetic parameters and selection responses in growth, pond survival and cold-water tolerance of blue tilapia (Oreochromis aureus) after four generations of multi-trait selection. Aquaculture 396: 32-42.

TINE M et al. 2023. Genetic Characterization of Nile Tilapia (Oreochromis niloticus) Strains from Senegal for Sustainable Local Aquaculture Production. Open Journal of Genetics 13: 1-22.

UKENYE EA & MEGBOWON I. 2023. Comparison of genetic diversity of farmed Oreochromis niloticus and wild unidentified tilapia (Wesafu) using microsatellite markers. Biodiversitas Journal of Biological Diversity 24: 2953-2957.

ZHU HP et al. 2015. Screening and identification of microsatellite markers associated with cold tolerance in Nile tilapia Oreochromis niloticus. Genetics and Molecular Research 14: 10308-10314.

ZHU WB et al. 2017. High genetic diversity and differentiation in three red tilapia stocks revealed by microsatellite DNA marker analysis. Aquaculture International 25: 1997-2006.

Downloads

Published

16-09-2025

How to Cite

SILVA, Bruno Corrêa; PEREIRA, Adriana; MASSAGO, Haluko; MARIGUELE, Keny Henrique. Genetic characterization of four generations of Oreochromis niloticus subjected to individual selection in southern Brazil. Revista de Ciências Agroveterinárias, Lages, v. 24, n. 2, p. 369–386, 2025. DOI: 10.5965/223811712422025369. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/26557. Acesso em: 20 sep. 2025.

Issue

Section

Research Article - Science of Animals and Derived Products

Funding data

Most read articles by the same author(s)