In silico toxicity of the natural pesticides clitoriacetal and 6-deoxyclitoriacetal: an ecotoxicological strategy

Authors

DOI:

https://doi.org/10.5965/223811712242023752

Keywords:

in silico, ecotoxicology, apis melifera, natural pesticides

Abstract

Brazil has a position of visibility in the popularization of pesticides which has caused public and environmental health problems. Thus, the search for new natural insecticides that meet appropriate guidelines is found in plants, as is the case of the compounds clitoriacetal and 6-deoxyclitoriacetal isolated from plants of the genus Clitoria constituted of rotenoids with insecticidal activity. In this context, this study aims to investigate the in silico toxicity of the pesticides clitoriacetal and 6-deoxychlitoriacetal in A. melifera bees, enabling the biosafety of these organisms. Based on the in silico models: BeetoxAl© (acute oral toxicity) and molecular docking a criteria for biochemical evaluation. In this way, it was established that the derivatives clitoriacetal and 6-deoxycyclitoriacetal have oral toxicological potential (acute) due to the various hydrogen acceptor sites and low quantitative exposure value. And from the molecular docking, it is pointed out that the complexes formed between the ligands and protein of A. melifera present similar three-dimensional positions but do not express any interaction with amino acids of the binding site of A. melifera conferring them low toxicity. The study was developed in an initial character, that is, it will still be necessary to improve and deepen the techniques applied and expand new in silico and in vivo assays.

Downloads

Download data is not yet available.

Author Biographies

Damião Sampaio de Sousa, State University of Ceará

.

Anthony Barbosa Belarmino, State University of Ceará

.

Victor Moreira de Oliveira, State University of Ceará

.

Francisco Rogênio da Silva Mendes, State University of Ceará

.

Emmanuel Silva Marinho, State University of Ceará

.

Gabrielle Silva Marinho, State University of Ceará

.

References

AGUIAR AF et al. 2019. Sistema de registro do agrotóxico no Brasil. Revista Alomorfia 3: 49-60.

ALVES VM et al. 2018. Development of web and mobile applications for chemical toxicity prediction. Journal of the Brazilian Chemical Society 29: 982-988.

ARAÚJO IMMD & OLIVEIRA ÂGRDC. 2016. Agronegócio e agrotóxicos: impactos à saúde dos trabalhadores agrícolas no nordeste brasileiro. Trabalho, Educação e Saúde 15: 117-129.

BERTONCELI MAA et al. 2022. Rotenoids from Clitoria fairchildiana R. Howard (Fabaceae) seeds affect the cellular metabolism of larvae of Aedes aegypti L. (Culicidae). Pesticide Biochemistry and Physiology 186: 105167.

CARVALHO NL & PIVOTO TS. 2011. Ecotoxicologia: Conceitos, abrangência e importância agronômica. Revista Monografias Ambientais: 176-192.

COSTA LF & PIRES GLP. 2016. Análise histórica sobre a agricultura e o advento do uso de agrotóxicos no Brasil. ln: ETIC - Encontro de Iniciação Científica. Toledo: Prudente Centro Universitário. 17p.

DE MOURA VM & SCHLICHTING CLR. 2007. Alcalóides, Piretróides e Rotenóides: inseticidas naturais como uma alternativa ecológica sustentável. Revista Uningá 13: 37-44.

DE PASSOS MS et al. 2019. Terpenoids isolated from Azadirachta indica roots and biological activities. Revista Brasileira de Farmacognosia 29: 40-45.

FERREIRA PG et al. 2022. Nicotina e a origem dos neonicotinoides: Problemas ou soluções? Revista Virtual de Química 14: 401-414.

GAILLARD T. 2018. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. Journal of chemical information and modeling 58: 1697-1706.

HALFELD-VIEIRA BDA et al. 2016. ln: Defensivos agrícolas naturais: Uso e perspectivas. Brasília: Embrapa. 853p.

HALGREN TA. 1996. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of computational chemistry 17: 490-519.

HANWELL MD et al. 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics 4: 1-17.

IMBERTY A et al. 1991. Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1: 631-642.

INÁCIO MVDS. 2007. Modificações estruturais e avaliação da citotoxicidade de rotenóides isolados e modificados da espécie Derris urucu. Dissertação (Mestrado em Ciências Naturais). Campos dos Goytacazes: UENF. 264p.

SANTIAGO DE OLIVEIRA DL et al. 2019. Characterization of the natural pesticide 6-desoxyclitoriacetal: A quantum study. International Journal of Recent Research and Review 10: 1149-1156.

MOREIRA-FILHO JT et al. 2021. BeetoxAI: An artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees. Artificial Intelligence in the Life Sciences 1: 100013.

NOCELLI RC et al. 2012. Riscos de pesticidas sobre as abelhas. Semana dos Polinizadores 3: 196-212.

PAULING L & WILSON EB. 2012. Introduction to quantum mechanics with applications to chemistry. New York: Courier Corporation.

PESENTI ME et al. 2009. Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. Journal of molecular biology 390: 981-990.

PITAKPAWASUTTHI Y et al. 2021. In vitro cytotoxic, genotoxic, and antityrosinase activities of Clitoria macrophylla root. Journal of Advanced Pharmaceutical Technology & Research 12: 8.

PK PK et al. 2021. A review on rotenoids: Purification, characterization and its biological applications. Mini Reviews in Medicinal Chemistry 21: 1734-1746.

RAMOS RF et al. 2018. Agrotóxicos e transgênicos: Uma crítica popular. Extensão em Foco 17: 40-53.

REGES M et al. 2019. Theoretical study of the natural insecticide rotenone clitoriacetal. International Journal of Recent Research and Review XII: 1-5.

SANTOS RA et al. 2016. Detection and quantification of rotenoids from Clitoria fairchildiana and its lipids profile. Natural Product Communications 11: 631-633.

SHITYAKOV S & FÖRSTER C. 2014. In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and Applications in Bioinformatics and Chemistry 2: 23-36.

VIEGAS-JÚNIOR C. 2003. Terpenos com atividade inseticida: Uma alternativa para o controle químico de insetos. Química Nova 26: 390-400.

YUSUF D et al. 2008. An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of chemical information and modeling 48: 1411-1422.

ZHENG M et al. 2021. Introducing artificial intelligence in the life sciences. Artificial Intelligence in the Life Sciences 1: 100001.

Downloads

Published

2023-12-29

How to Cite

SOUSA, Damião Sampaio de; BELARMINO, Anthony Barbosa; OLIVEIRA, Victor Moreira de; MENDES, Francisco Rogênio da Silva; MARINHO, Emmanuel Silva; MARINHO, Gabrielle Silva. In silico toxicity of the natural pesticides clitoriacetal and 6-deoxyclitoriacetal: an ecotoxicological strategy. Revista de Ciências Agroveterinárias, Lages, v. 22, n. 4, p. 752–758, 2023. DOI: 10.5965/223811712242023752. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/23507. Acesso em: 26 dec. 2024.

Issue

Section

Research Note - Multisections and Related Areas