Landrace maize seed selection method for small producers
DOI:
https://doi.org/10.5965/223811712222023346Keywords:
physiological seed quality, ear seed position, vigour, viabilityAbstract
The selection of seeds with physiological quality is essential for small farmers, who select and save seeds for the next crop. The objective of this work was to evaluate the physiological quality of seeds in three positions on the ear of two varieties landrace maize. The experiment was carried out in the municipality of Bagé, in the year 2020, with seeds from the 2019/2020 harvest at Faculdade IDEAU. Seeds of the Ferrinho and Amarelão varieties were used, in a completely randomized design, with four replications and the treatments were composed by separating the seeds in three positions of the ear: Basal, Intermediate and Apical. Tests for germination, first germination count, seedling length and seedling dry mass were performed. The seeds of the Basal and Intermediate positions present germination between 94 and 98%, higher than the Apical position. The first germination count and the tests of seedling length and dry mass showed a low level of vigor for all treatments. The seeds of the Basal and Intermediate positions of var. of Crioulo Amarelão and Ferrinho corn showed higher viability than the seeds from the apical position of the ear. However, both showed a low level of vigor, indicating that cultivation techniques need to be improved to generate seeds with a high level of vigour.
Downloads
References
ANDRADE GC et al. 2019. Seed reserves reduction rate and reserves mobilization to the seedling explain the vigour of maize seeds. Journal of Seed Science 41: 488-497.
ANTONELLO LM et al. 2009. Influência do tipo de embalagem na qualidade fisiológica de sementes de milho crioulo. Revista Brasileira de Sementes 31: 75-86.
BATTISTI R et al. 2020. Rules for grown soybean-maize cropping system in Midwestern Brazil: Food production and economic profits. Agricultural Systems 182: 102850.
BEVILAQUA GAP et al. 2014. Agricultores guardiões de sementes e ampliação da agrobiodiversidade. Cadernos de Ciência & Tecnologia 31: 99-118.
BIANCHETTO R et al. 2017. Desempenho agronômico de milho crioulo em diferentes níveis de adubação no Sul do Brasil. Revista Eletrônica Científica da UERGS 3: 528-545.
BONELLI LE et al. 2016. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research 198:215-225.
BRASIL. 2009. Regras para análise de sementes. Secretaria de Defesa Agropecuária, Ministério da Agricultura, Pecuária e Abastecimento. Brasília: MAPA/ACS. 399 p.
CAIRNS JE & PRASANNA BM. 2018. Developing and deploying climate-resilient maize varieties in the developing world. Plant Biology 45: 1-5.
CARPENTIERI-PÍPOLO V et al. 2010. Avaliação de cultivares de milho crioulo em sistema de baixo nível tecnológico. Acta Scientiarum 32: 229-233.
CATÃO HCRM et al. 2010. Qualidade física, fisiológica e sanitária de sementes de milho crioulo produzidas no norte de Minas Gerais. Ciência Rural 40: 2060-2066.
DIAS MAN et al. 2015. Vigor tests association as an alternative for precise and efficient assessment of maize seed quality. Revista Caatinga 28: 93-99.
COSTA EN et al. 2020. Resistance of maize landraces from Brazil to fall armyworm (Lepdoptera: Noctuidae) in the winter and summer seasons. Bragantia 79: 377-386.
COSTA FM et al. 2017. Maize diversity in Southern Brazil: indication of a microcenter of Zea mays L. Genetic Resources and Crop Evolution 64: 681-700.
DE ANDRADE JG et al. 2020. Diagnóstico das técnicas de produção e armazenamento de sementes crioulas em assentamentos rurais de Aparecida, Paraíba, Brasil. Research, Society and Development 9: e130953147.
DOS SANTOS CM et al. 2021. Qualidade fisiológica de sementes crioulas de milho e feijão de pequenos agricultores de Ituiutaba-MG. Research, Society and Development 10: e47101320857.
DWIVEDI SL et al. 2016. Landrace germplasm for improving yield and abiotic stress adaptation. Trends in Plant Science 21: 31-42.
FENZI M & COUIX N. 2022. Growing maize landraces in industrialized countries: from the search for seeds to the emergence of new practices and values. International Journal of Agricultural Sustainability 20: 327-345.
FERREIRA DF. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35: 1039-1042.
FREITAS FO et al. 2003. DNA from primitive maize landraces and archaeological remains: implications for the domestication of maize and its expansion into South America. Journal of Archaeological Science 30: 901-908.
GONDIM TCO et al. 2006. Avaliação da qualidade fisiológica de sementes de milho-crioulo sob estresse causado por baixo nível de nitrogênio. Revista Ceres 53: 413-417.
GOUESNARD B et al. 2016. Identification of adaptation traits to drought in collections of maize landraces form southern Europe and temperate regions. Euphytica 209: 565-584.
GUZZON F et al. 2021. Conservation and use of Latin American maize diversity: Pillars of nutrition security and cultural heritage of humanity. Agronomy 11: 172.
HOU P et al. 2020. How to increase maize production without extra nitrogen input. Resources, Conservation & Recycling 160: 104913.
HÖLKER AC et al. 2019. European maize landraces made accessible for plant breeding and genome-based studies. Theoretical and Applied Genetics 132: 3333-3345.
JIN X et al. 2013. Proteomic identification of genes associated with maize grain-filling rate. Plos One 8:e59353.
KHAEIM H et al. 2022. Impact of temperature and water on sedd germination and seedling growth of maize (Zea mays L.). Agronomy 12: 397.
KUMAR RA et al. 2014. Changes in DNA damage, molecular integrity, and copy number for plastid DNA and mitochondrial DNA during maize development. Journal of experimental Botany 65: 6425-6439.
MACHADO AT et al. 2011. Manejo da diversidade genética e melhoramento participativo de milho em sistemas agroecológicos. Revista Brasileira de Agroecologia 6: 127-136.
MENEGUZZO MRR et al. 2020. Length of soybean and maize seedlings influenced by seed vigor and size. Revista de Ciências Agrárias 43: 193-201.
MENEZES NL et al. 2002. Qualidade física e fisiológica das sementes de milho após o beneficiamento. Revista Brasileira de Sementes 24: 97-102.
MONDO VHV & CICERO SM. 2005. Análise de imagens na avaliação da qualidade de sementes de milho localizadas em diferentes posições na espiga. Revista Brasileira de Sementes 27: 09-18.
NERLING D et al. 2014. Qualidade física e fisiológica de sementes de milho durante o beneficiamento. Revista de Ciências Agroveterinárias 13: 238-246.
OLDENBURG DJ et al. 2013. The amount and integrity of mtDNA in maize decline with development. Planta 237: 603-617.
PRASANNA BM. 2012. Diversity in global maize germplasm: Characterization and utilization. Journal of Biosciences 37: 843-855.
QUEIROZ TN et al. 2019. Avaliação da qualidade fisiológica de sementes de variedades tradicionais de milho. Revista da Universidade Vale do Rio Verde 17: 1-9.
SENA DVA et al. 2015. Vigor de sementes de milho cv.’Sertanejo’ por testes baseado no desempenho de plântulas. Ciência Rural 45: 1910-1916.
SPOLAOR LT et al. 2018. Brazilian maize landraces variability under high and low phosphorous inputs. Maydica 63: 1-8.
STUMM SBQ et al. 2016. Qualidade fisiológica de sementes de milho em função do tamanho, formato e tratamento. Scientia Agraria Paranaensis 15: 222-227.
SZABÓ A et al. 2022. Analysis of nutrient-specific response of maize hybrids in relation to leaf area index (LAI) and remote sensing. Plants 11: 1197.
WAHA K et al. 2020 Multiple cropping systems of the world and the potential for increasing cropping intensity. Global Environmental Change 64: 102131.
WANG J et al. 2020. Joint optimization of irrigation and planting pattern to guarantee seed quality, maximize yield, and save water in hybrid maize seed production. European Journal of Agronomy 113: 125970.
WANG J & HU X. 2021. Research on corn production efficiency and influencing factors of typical farms: Based on data from 12 corn-producing countries from 2012 to 2019. Plos One 16: e0254423.
WATERWORTH WM et al. 2015. The importance of safeguarding genome integrity in germination and seed longevity. Journal of Experimental Botany 66: 3549-3558.
YANG H et al. 2018. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Scientific Reports 8: 15665.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Authors & Revista de Ciências Agroveterinárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors publishing in this journal are in agreement with the following terms:
a) Authors maintain the copyrights and concede to the journal the copyright for the first publication, according to Creative Commons Attribution Licence.
b) Authors have the authority to assume additional contracts with the content of the manuscript.
c) Authors may supply and distribute the manuscript published by this journal.