Avaliação da interação de citral, geraniol e timol no ácaro-vermelho-das-aves Dermanyssus gallinae (DE GEER, 1778) em condições in vitro

Autores

DOI:

https://doi.org/10.5965/223811712222023303

Palavras-chave:

Acaricida, aditivo, antagonismo, Aves, Sinergismo

Resumo

O controle de Dermanyssus gallinae em pequenas produções de poedeiras é realizado por métodos químicos. No entanto, seu uso indiscriminado tem gerado problemas de resistência e poluição ambiental. Este problema tem incentivado o uso de substâncias naturais para o controle de ácaros. Assim, o objetivo deste trabalho foi avaliar a atividade acaricida dos bioativos citral (Ci), geraniol (Ge) e timol (Thy) sobre D. gallinae em condições in vitro utilizando seis concentrações (0,05, 1, 2, 3, 4 e 5g/mL). Além disso, as interações das misturas dos três bioativos foram avaliadas por meio de combinações binárias (1:1) e terciárias (1:1:1). O sinergismo da combinação dos bioativos foi realizado utilizando o software CompuSyn e calculando o índice de combinação (CI). LC50, LC90 e LC99 com limites de confiança de 95% foram estimados por análise Probit. Os bioativos Ci, Ge e Thy apresentam atividade acaricida sobre o ácaro-vermelho-da-aves. A combinação de Ge:Thy e Ci:Ge apresentou sinergismo muito forte com CI de 0,084 e 0,052, enquanto Ci:Thy apresentou forte sinergismo com CI de 0,122 na concentração de 0,05g/mL. A combinação terciária em 1:1:1 apresentou maior efeito tóxico e fortes efeitos sinérgicos em baixas concentrações com 100% de mortalidade em concentração de 1g/mL com CI de 0,147. A combinação de bioativos naturais poderia ser uma forma adicional de controle de D. gallinae sem colocar em risco o bem-estar das aves e seria uma medida ecologicamente correta.

Downloads

Não há dados estatísticos.

Referências

ARAÚJO LX et al. 2016. Synergism of thymol, carvacrol and eugenol in larvae of the cattle tick, Rhipicephalus microplus, and brown dog tick, Rhipicephalus sanguineus. Medical and veterinary entomology 30: 377-382.

ARCHANA PR et al. 2011. Modulation of gamma ray-induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integrative Cancer Therapies 10: 374-383.

ASSOUGUEM A et al. 2022. Evaluation of the effect of four bioactive compounds in combination with chemical product against two spider mites Tetranychus urticae and Eutetranychus orientalis (Acari Tetranychidae). Evidence-Based Complementary and Alternative Medicin 2022: 2004623.

BENAMAR-AISSA B et al. 2022. Synergistic effects of essential oils and phenolic extracts on antioxidant activites responses using two Artemisia species (A. campestris and A. herba alba) combined with Citrus aurantium. Biocatalysis and Agricultural Biotechnology 47: 102570.

BLENAU W et al. 2011. Plant essential oils and formimidines as insectivides/acaricides: What are the molecular targets? Apidologie 43: 334-347.

CAMILO CJ et al. 2017. Acaricidal activity of essential oils: A review. Trends in Phytochemical Research 1: 183-198.

CHOU TC. 2010. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay MethodSynergy Quantification Method. Cancer research 70: 440-446.

CHOU TC. 2006. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacology Review 58: 621–681.

DE LUNA CJ et al. 2008. The poultry red mite Dermanyssus gallinae as a potential carrier of vector-borne diseases. Annals of the New York Academy of Sciences 1149: 255-258.

DI PALMA A et al. 2012. A gallery of the key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermanyssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macronyssidae). Parasites & vectors 5: 1-10.

ELGENDY EM & KHAYYAT SA. 2008. Oxidation studies on some natural monoterpenes: citral, pulegone, and camphene. Russian Journal of Organic Chemistry 44: 814-822.

ELZEN P et al. 2000. Evaluation of grapefruit essential oils for controlling Varroa jacobsoni and Acarapis woodi. American Bee Journal 140: 666-668.

ENAN EE. 2005. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochemistry and Molecular Biology 35: 309-321

FU J et al. 2016. Drug combination in vivo using combination index method: Taxotere and T607 against colon carcinoma HCT-116 xenograft tumor in nude mice. Synergy 3: 15-30.

GEORGE DR et al. 2015. Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science? Parasites & vectors 8: 1-10.

GEORGE DR et al. 2010. Effect of plant essential oils as acaricides against the poultry red mite, Dermanyssus gallinae, with special focus on exposure time. Veterinary parasitology 169: 222-225.

GEORGE DR et al. 2009. Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae. Veterinary parasitology 161: 276-282.

GUEVARA E & MOLINA A. 2019. Aplicabilidad biotecnológica de aceites esenciales de Lippia alba. Dissertation (Master in biotechnology). Barranquilla: Universidad Libre. 114p.

HENDERSON, CF & TILTON EW. 1955. Tests with acaricides against the brown wheat mite. Journal of Economic Entomology, 48: 157-161.

JANKOWSKA M et al. 2017. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules 23: 34.

JYOTI N et al. 2019. In vitro assessment of synergistic combinations of essential oils against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Experimental parasitology 201: 42-48.

KAUR S et al. 2011. Citronellol disrupts membrane integrity by inducing free radical generation. Zeitschrift für Naturforschung C 66: 260-266.

KIM SI et al. 2007. Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Veterinary Parasitology 145: 377-382.

KOUL O et al. 2013. Comparative study on the behavioral response and acute toxicity of some essential oil compounds and their binary mixtures to larvae of Helicoverpa armigera, Spodoptera litura and Chilo partellus. Industrial Crops and Products 49: 428-436.

LOPES T et al. 2019. Evaluation of synergism and development of a formulation with thymol, carvacrol and eugenol for Rhipicephalus microplus control. Experimental Parasitology 207: 107774.

MA WB et al. 2014. Fumigant activity of eleven essential oil compounds and their selected binary mixtures against Culex pipiens pallens (Diptera: Culicidae). Parasitology research 113: 3631-3637.

MASOUMI F et al. 2016. Combination of carvacrol and thymol against the poultry red mite (Dermanyssus gallinae). Parasitology research 115: 4239-4243.

MIRESMAILLI S & ISMAN MB. 2014. Botanical insecticides inspired by plant–herbivore chemical interactions. Trends in plant science 19: 29-35.

NECHITA IS et al. 2015. The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae. Veterinary parasitology 214: 348-352.

NTALLI NG et al. 2011. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest management science 67: 341-351.

NOVATO TLP et al. 2019. Evaluation of synergism and development of a formulation with thymol, carvacrol and eugenol for Rhipicephalus microplus control. Experimental parasitology 207: 107774.

PAVELA R. 2014. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd (Lep., Noctuidae) larvae. Industrial crops and products 60: 247-258.

SEO KA et al. 2008. The monoterpenoids citral and geraniol are moderate inhibitors of CYP2B6 hydroxylase activity. Chemico-biological interactions 174: 141-146.

SIGOGNAULT A et al. 2017. Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasites & Vectors 10: 1-6.

SOMMER D et al. 2016. Role of the poultry red mite (Dermanyssus gallinae) in the transmission of avian influenza A virus. Tierarztliche Praxis. Ausgabe G, Grosstiere/Nutztiere 44: 26-33.

SPARAGANO OAE et al. 2014. Significance and control of the poultry red mite, Dermanyssus gallinae. Annual review of entomology 59: 447-466.

SPARAGANO OAE et al. 2013. Comparing Terpenes from Plant Essential Oils as Pesticides for the Poultry Red Mite (Dermanyssus gallinae). Transboundary and Emerging Diseases 60: 150-153.

TABARI MA et al. 2020. Acaricidal activity, mode of action, and persistent efficacy of selected essential oils on the poultry red mite (Dermanyssus gallinae). Food and Chemical Toxicology 138: 111207.

TABARI MA et al. 2017. Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the α-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential. Parasitology research 116: 1545-1551.

TABARI MA et al. 2015. Carvacrol as a potent natural acaricide against Dermanyssus gallinae. Parasitology research 114: 3801-3806.

VAN SAUERS A. 2009. The contribution of red poultry mites (Dermanyssus gallinae (Degree 1778) (Acari: Dermanyssidae) to the cross contamination of poultry with Campylobacter spp. And Salmonella spp. And the acaricidal effect of carvacrol, thymol, bay oil and neem oil on Dermanyssus gallinae. Master thesis. (Master Veterinary Medicine). Utrecht: University Utrecht. 36p.

VALIENTE C et al. 2009. The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Experimental and Applied Acarology 48: 93–104.

WARBER S. 1998. In: KAUFMAN PB et al. (Eds.) Modes of action at target sites. Boca Raton: CRC Press. p.157–182.

Downloads

Publicado

2023-05-31

Como Citar

BUITRAGO, James Arbey Ávila; CABRA, Eneida Torres; AMAYA, Lizeth Andrea Moreno; GUEVARA, Luis A. Paez. Avaliação da interação de citral, geraniol e timol no ácaro-vermelho-das-aves Dermanyssus gallinae (DE GEER, 1778) em condições in vitro. Revista de Ciências Agroveterinárias, Lages, v. 22, n. 2, p. 303–311, 2023. DOI: 10.5965/223811712222023303. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/22781. Acesso em: 19 abr. 2024.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados