Ethological behavior of Bos taurus, Bos indicus, and Caqueteño Creole cattle in three tree cover systems of Brachiaria decumbens paddocks at the Amazon foothills in Colombia

Authors

DOI:

https://doi.org/10.5965/223811712122022148

Keywords:

Ethology, Cattle, Behavior, Tree cover

Abstract

The study was conducted at the Amazon Research Center CIMAZ - MACAGUAL of the University of Amazonia, Colombia, with a tropical rain forest climate (Af). The behavior of Bos taurus, Bos indicus, and Caqueteño Creole cattle, the animals were observed in paddocks with three levels of scattered tree cover density. The pasture was composed of Braquiaria decumbens with 35 days of regrowth. Direct observations were made from 9:00 a.m. to 5:00 p.m. with 10-minute intervals between the recording of the activities. The activity performed most often during the day by all of the animals was grazing under the sun, and those who pasture the most are the Caqueteño Creole, followed by the Bos indicus and, finally, the Bos taurus. Ruminating was the second most important activity performed by the cattle, having presented the same tendency. In the paddocks with a low level of tree cover, the animals pasture more in the shade; this trend is more relevant among B. taurus cattle. Caqueteño Creole cattle dedicate less time to water consumption and rest, spending more time grazing, in the high and medium cover levels, they interrupt the grazing at noon for a shorter time compared to B. indicus and B. taurus; after 2 p.m., the creoles vertiginously increase grazing. At the high cover level, the peak of grazing of the Caqueteño Creoles is at 9 a.m. and from 1-1:30 p.m., while at the medium tree cover level, the peak of pasturing was at noon, 1:30 p.m., and 4:30 p.m., at the high tree level of cover, the peak for the three breeds was at 11 a.m. Only at the average tree level of cover did the Caquetaño creoles and B. indicus present a similar peak. In 9-9:30 a.m. and 4-5 p.m., the breeds substantially reduce rumination.

Downloads

Download data is not yet available.

References

AGUILAR A. 2015. El Estrés Calórico en la Prevalencia de Mastitis en Vacas de la Región Ciénega del Estado de Jalisco.

ANZOLA HJ. 2005. Conservación y utilización de las razas bovinas criollas y colombianas para el desarrollo rural sostenible. Archivos de Zootecnia 54: 141-144.

BARRAGÁN WA et al. 2015. Variables fisiológicas-metabólicas de estrés calórico en vacas bajo silvopastoreo y pradera sin árboles. Agronomía Mesoamericana 26: 211-223.

BERMAN A. 2011. Invited review: Are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science 94: 2147-2158.

BRITO LFC et al. 2004. Testicular thermoregulation in Bos indicus, crossbred and Bos taurus bulls: relationship with scrotal, testicular vascular cone and testicular morphology, and effects on semen quality and sperm production. Theriogenology 61: 511-528.

BURROW HM. 2006. Utilization of diverse breed resources for tropical beef production. In: 8th World Congress on Genetics Applied to Livestock Production, Proceedings… Belo Horizonte. 1-32.

CEPAL et. al. 2017. Perspectivas de la agricultura y el desarrollo rural en las Américas y el Caribe: Una mirada hacia América Latina y el Caribe 2017-2018. San José: IICA. 267p.

CERQUEIRA J et al. 2016. Predicción de estrés térmico en vacas lecheras mediante indicadores ambientales y fisiológicos. Archivos de Zootecnia 65: 357-364.

CURTIS SE. 1983. Environmental management in animal agriculture. Iowa State University Press. 409p.

Di RIENZO JA et al. 2015. InfoStat (No. 2015). Grupo InfoStat, FCAUniversidad Nacional de Córdoba, Argentina.

FAO. 2009. Review of evidence on drylands pastoral systems and climate change. Implications and opportunities for mitigation and adaptation. In NEELY C. BUNNING S. & WILKES A. (Eds.) Food and Agriculture Organization of the United Nations (FAO).

FOX J. 2005. The R Commander. Journal of Statistical Software, 14:1-42.

GALLARDO MR et al. 2005. Diet and cooling interactions on physiological responses of grazing dairy cows, milk production and composition. International Journal of Biometeorology 50: 90-95.

GINJA C et al. 2019. The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers. Scientific Reports 9: 1-16.

HAHN GL et al. 2003. Perspective on development of thermal indices for animal studies and management. In EAAP Technic Series (Vol. 7).

HERNANDEZ M. 2016. Estado poblacional del ganado Reyna en Nicaragua: distribución, manejo, producción y cualidades. La Calera 14: 38.

HERRERA Y. 2010. Asociación del locus Bola-Drb3.2 con el virus de la leucosis bovina en razas Criollas Y Colombianas Universidad Nacional de Colombia.

HERZOG SK & TIESSEN H. 2017. Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research São José dos Campos.

KÖPPEN W & GEIGER R. 1938. Des geographischen system der klimate. In Handbuch der klimatologie.

LIMA SB et al. 2020. Effect of high temperature on physiological parameters of Nelore (Bos taurus indicus) and Caracu (Bos taurus taurus) cattle breeds. Tropical Animal Health and Production 52: 2233-2241.

MARTÍNEZ R et al. 2005. Estructura y función del banco de Germoplasma in vitro en Colombia. Archivos de Zootecnia 54: 545-550.

MAURICIO RM et al. 2019. Silvopastoral systems in Latin America for biodiversity, environmental, and socioeconomic improvements. In: Agroecosystem Diversity Amsterdã: Elsevier. p. 287-297.

McMANUS C et al. 2002. Genetic and environmental factors which influence weight and reproduction parameters in Pantaneiro cattle in Brazil. Archivos de Zootecnia 51: 194.

MOLINA R. 2017. El estrés calórico afecta el comportamiento reproductivo y el desarrollo embrionario temprano en bovinos. Nutrición Animal Tropical 11: 1-15.

NAVAS A. 2008. Efecto de los sistemas silvopastoriles en la reducción del estrés calórico y su importancia en la producción bovina tropical. Revista El Cebú 359: 14-17.

NAY T & HAYMAN RH. 1956. Sweat glands in Zebu (Bos indicus L.) and European (B. taurus L.) cattle. I. Size of individual glands, the denseness of their population, and their depth below the skin surface. Australian Journal of Agricultural Research 7: 482-492.

NAY T & HAYMAN RH. 1963. Some skin characters in five breeds of European (Bos taurus) dairy cattle. Australian Journal of Agricultural Research 14: 294-302.

NÚÑEZ R et al. 2016. La adaptabilidad de los recursos zoogenéticos Criollos, base para enfrentar los desafíos de la producción animal. Archivos de Zootecnia 65: 461-468.

PÉREZ E et al. 2008. Comportamiento etológico de bovinos en sistemas silvopastoriles en Chiapas, México. Pastos y Forrajes 31: 1.

PETIT M. 1972. Emploi du temps des troupeaux de vaches-mères et de leurs veaux sur les pâturages d’altitude de l’Aubrac. Annales de Zootechnie 21: 5-27.

PHILLIPS C. 2016. The welfare risks and impacts of heat stress on sheep shipped from Australia to the Middle East. The Veterinary Journal 218: 78-85.

PRAYAGA KC et al. 2009. Genetics of adaptive traits in heifers and their relationship to growth, pubertal and carcass traits in two tropical beef cattle genotypes. Animal Production Science 49: 413-425.

R DEVELOPMENT CORE TEAM. 2013. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. In URL http://www. R-project. org.

SCHOEMAN SJ. 1988. Recent research into the production potential of indigenous cattle with special reference to the Sanga. South African Journal of Animal Science, 19: 55-61.

SCHOLTZ MM & THEUNISSEN A. 2010. The use of indigenous cattle in terminal cross-breeding to improve beef cattle production in Sub-Saharan Africa. Animal Genetic Resources/Resources Génétiques Animales 46:33-39.

SIAT-AC. 2018. Departamento de Caquetá. Sistema de Información Ambiental Territorial de La Amazonía Colombiana. http://siatac.co/web/guest

SORROZA N et al. 2019. El estrés y sus efectos en el sistema inmunológico. RECIAMUC, 2 (2 SE-Artículos de Revisión).

SPROTT LR et al. 2001. Factors affecting decisions on when to calve beef females. The Professional Animal Scientist 17: 238-246.

STRYDOM PE. 2008. Do indigenous Southern African cattle breeds have the right genetics for commercial production of quality meat? Meat Science 80: 86-93.

UNCHUPAICO I et al. 2020. Temperatura ambiental y su efecto sobre parámetros fisiológicos en vacas Nellore y cruces bajo condiciones del trópico peruano. Revista de Investigaciones Veterinarias Del Perú. 31.

VALENTE ÉEL et al. 2015. Intake, physiological parameters and behavior of Angus and Nellore bulls subjected to heat stress. Semina: Ciências Agrárias. 36: 4565-4574.

VEISSIER I et al. 2018. Heat stress in cows at pasture and benefit of shade in a temperate climate region. International Journal of Biometeorology 62: 585-595.

WEST JW. 2003. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science 86: 2131-2144.

Downloads

Published

2022-03-25

How to Cite

LONDOÑO-PAÉZ, Sandra Milena; ORJUELA-CHAVES, Jose Alfredo; ÁLVAREZ-CARRILLO, Faver; SUAREZ-SALAZAR, Juan Carlos; VASQUEZ-GAMBOA, Lucena; ORTIZ-MENESES, Jhoyner Felipe; PARRA, Gustavo Adolfo Celis. Ethological behavior of Bos taurus, Bos indicus, and Caqueteño Creole cattle in three tree cover systems of Brachiaria decumbens paddocks at the Amazon foothills in Colombia. Revista de Ciências Agroveterinárias, Lages, v. 21, n. 2, p. 148–158, 2022. DOI: 10.5965/223811712122022148. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/19844. Acesso em: 28 may. 2024.

Issue

Section

Research Article - Science of Animals and Derived Products