Progress of beet Cercospora leaf spot under different spraying regimes
DOI:
https://doi.org/10.5965/223811711922020197Keywords:
Beta vulgaris ssp. vulgaris L., Cercopora beticola, epidemiology, chemical controlAbstract
Cercospora leaf spot (CLS) caused by Cercospora beticola Sacc. is controlled by foliar spraying with fungicides following a fixed schedule, without considering the disease progress. A forecasting system can predict the progress of the disease and direct the spraying regime, reducing the number of applications and optimizing the disease management. To evaluate the progress of CLS under the different spraying regimes, the statistical modeling technique known as mixed models was applied. These models include not only fixed effects but also random effects for each individual in the studied population. In the harvest seasons of 2018 and 2019, the spraying regimes used were based on systems with accumulated estimated severity (SE) values of 0.15; 0.25, and 0.35, in addition to standard controls with spraying intervals of five and seven days. The accumulated severity of CLS as a function of time in the five spraying regimes was calibrated with a Gompertz model adjusted by the mixed model and the random effect adjusted to the upper asymptote. As a result of the model calibration, the spraying regime treatment with SE=0.35 did not differ from the standard controls regarding the area under the disease progress curve (AACPD), final severity, and productivity. The data presented in this study demonstrate the efficiency of a forecasting system in CLS management, with the advantage of reducing the number of fungicide sprayings and environmental impact.
Downloads
References
BARRETO M et al. 2004. Sistemas de previsão e estação de aviso. In: VALE FXR et al. Epidemiologia aplicada ao manejo de doenças de plantas. Belo Horizonte: Perffil. p.243-266.
BATES D et al. 2012. lme4: Linear mixed-effects models using S4 classes. R package. Vienna: R Foundation for Statistical Computing. Disponível em: http://www.R-project.org. Acesso em: 15 dez. 2018.
BERGAMIN FILHO A & AMORIM L. 2011. Sistemas de previsão e avisos. In: AMORIM L et al. Manual de fitopatologia: princípios e conceitos. 4.ed. São Paulo: Ceres. p.389-408.
BERGAMIN FILHO A & AMORIM L. 1996. Doenças de plantas tropicais: epidemiologia e controle econômico. São Paulo: Ceres. 289p.
CAMPBELL CL & MADDEN LV. 1990. Introduction to plant disease epidemiology. New York: Wiley Interscience. 532p.
DAVIDIAN M & GILTINAN DM. 2003. Nonlinear Models for Repeated Measu¬rement Data: An Overview and Update. Journal of Agricultural, Biological, and Environmental Statistics 8: 387-419.
DEEPAYAN S. 2012. Lattice: Multivariate Data Visualization with R. Vienna: R Foundation for Statistical Computing. Disponível em: http://www.R-project.org. Acesso em: 15 dez. 2018.
DELLAMATRICE PM. 2000. Degradação do herbicida 14C Diuron por Acinetobacter baumannii e pela microbiota do solo. Dissertação (Mestrado em Ciências) Piracicaba: USP. 88p.
EMBRAPA. 2013. Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de classificação de solos. 3.ed. Brasília: Embrapa. 353p.
EPAGRI. 2015. Levantamento de espécies de hortaliças cultivadas na região do Alto Vale do Itajaí, 2010 e 2014. Ituporanga: Epagri. 7p. (Relatório de pesquisa).
FERNANDES JMC & MAFFIA LA. 1994. Simulação de epidemias. Revisão Anual de Patologia de Plantas 2: 293-334.
FERREIRA MD & TIVELLI SW. 1989. Cultura da beterraba: recomendações gerais. Guaxupé: Cooxupé. 14p. (Boletim Técnico 2).
KRANZ J & HAU B. 1980. Systems analysis in epidemiology. Annual Review of Phytopathology 18: 67-83.
KRAUSE RA & MASSIE LB. 1975. Predictive systems: modern approaches to disease control. Annual Review of Phytopathology 13: 31-47.
MAY DE MIO LL et al. 2008. Proposta de escala diagramática para quantificação da cercosporiose da beterraba. Scientia Agraria 9: 331-337.
MARCUZZO LL et al. 2016a. Efeito de fosfito de potássio e de fungicidas no controle da cercosporiose (Cercospora beticola) da beterraba. Summa Phytopathologica 42: 186-187.
MARCUZZO LL et al. 2016b. Influence of temperature and leaf wetness duration on the severity of Cercospora leaf spot of beet. Summa Phytopathologica 42: 89-91.
MIZUBUTI ESG. 1999. Sistema de previsão de doenças de plantas: uma ferramenta útil? In: ZAMBOLIM L. 1° Encontro de manejo integrado de doença e pragas. Viçosa: UFV. p.42-46.
R DEVELOPMENT CORE TEAM. 2012. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Disponível em: http://www.R-project.org. Acesso em: 2 jul. 2018.
RACCA P & JÖRG E. 2007. CERCBET 3 – a forecaster for epidemic development of Cercospora beticola. Bulletin OEPP/EPPO 37: 344–349
REIS EM. 2004. Previsão de doenças de plantas. Passo Fundo: UPF. 316p.
SAKAMOTO Y et al. 1986. Akaike Information Criterion Statistics. Dordrecht: Kluwer Academic Publishers. 290p.
TENG PS. 1985. Comparison of simulation approaches to epidemic modeling. Annual Review of Phytopathology 23: 351-379.
TIVELLI SW et al. 2011. Beterraba, do plantio à comercialização. Campinas: Instituto Agronômico. 45p. (Boletim Técnico 210).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista de Ciências Agroveterinárias (Journal of Agroveterinary Sciences)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors publishing in this journal are in agreement with the following terms:
a) Authors maintain the copyrights and concede to the journal the copyright for the first publication, according to Creative Commons Attribution Licence.
b) Authors have the authority to assume additional contracts with the content of the manuscript.
c) Authors may supply and distribute the manuscript published by this journal.