Lower base temperature, thermal time and grapevine phenology and kiwi cultivars

Authors

  • Rafael Anzanello Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Veranópolis, RS, Brasil.
  • Mariane Castanho de Christo Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil.

DOI:

https://doi.org/10.5965/223811711832019313

Keywords:

growing season, dormancy, degree-days, Actinidia sp., Vitis sp.

Abstract

This study aimed to evaluate the lower base temperature (Tb), thermal time and grapevine phenology and kiwi cultivars. Twigs 25-35-cm long for the following cultivars: grapevine, Chardonnay (CH), Isabel (IS), Niágara Branca (NB), Concord (CO) and Bordô (BO); and kiwi, Bruno (BR), Monty (MO), Elmwood (EL), MG06 (MG) and Yellow Queen (YQ) were collected in orchards in Veranópolis, RS State, on 06/03/2015. Intact twigs packed in black plastic film were subjected to 1,008 chilling hours (HC) at 0°C in incubators to overcome dormancy and then transferred to temperatures of 4, 6, 8, 10, and 12°C on single-node cuttings planted in phenolic foam. Over 150 d, budburst of the buds was evaluated in 2-3-d intervals in the green-tip stage. The resulted inverse data for number of days to budburst (1/days to budburst) was inserted into regression curves to estimate Tb for each genotype. Historical phonological series comprised of 10-years for the analyzed cultivars and meteorological data of the cultivation sites were used to determine thermal time (degree-days) for the fruit trees during the growing season. Temperate fruit species exhibited different Tb. Tb was lower for kiwi cultivars (BR=3,0°C; MO=3,3ºC; EL=3,1°C; MG=3,2°C and YQ=3°C) and higher for grapevine cultivars (CH=4,2°C; IS=4,3°C; NB=4,1°C; CO=6,2°C; and BO=4,4°C). The thermal time, in degree-days (DD), varied from 1670.9 to 2060.7 for grapevine cultivars and from 3179.6 to 3762.0 for kiwi cultivars. The higher DD sum for kiwi crop was given by the higher number of days of its vegetative cycle associated to lower Tb of the genotypes, when compared to the grapevine crop. The phenological subperiod (budburst to maturation) of the fruit trees in 100% of the assessed cases responded more to thermal time (degree-days) than to chronological time (d) to complete the vegetative cycle.

Downloads

Download data is not yet available.

Author Biographies

Rafael Anzanello, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Veranópolis, RS, Brasil.

Departamento de Diagnóstico e Pesquisa Agropecuária

Mariane Castanho de Christo, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil.

Faculdade de Agronomia

References

ANZANELLO R. 2012. Fisiologia e modelagem da dormência de gemas em macieira. Tese (Doutorado em Fitotecnia). Porto Alegre: UFRGS. 281p.

ANZANELLO R et al. 2014. Métodos biológicos para avaliação da brotação de gemas em macieira para modelagem da dormência. Semina: Ciências Agrárias 35: 1163-1176.

ARNOLD CY. 1959. The determination and significance of the base temperature in linear heat unit system. Journal of the American Society for Horticultural Science 74: 430-445.

BERGAMASCHI H. 2007. O clima como fator determinante da fenologia das plantas. In: REGO GM et al. (Ed.). Fenologia ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. Colombo: Embrapa Florestas. p. 291-310.

BERLATO MA & SUTILI VR. 1976. Determinação das temperaturas-base dos subperíodos emergência-pendoamento e emergência-espigamento de três cultivares de milho (Zea mays L.). In: Reunião Técnica do Milho e Sorgo, 21. Anais... Porto Alegre: UFRGS. p. 523-527.

BONHOMME R. 2000. Bases and limits to using "degrees day" units. European Journal of Agronomy 13: 1-10.

CARDOSO LS et al. 2012. Disponibilidades climáticas para macieira na região de Vacaria, RS. Ciência Rural 42: 1960-1967.

CARVALHO RIN et al. 2010. Estádios de brotação de gemas de fruteiras de clima temperado para o teste biológico de avaliação de dormência. Revista Acadêmica de Ciências Agrárias e Ambientais 8: 93-100.

CARVALHO RIN & BIASI LA. 2012. Índice para a avaliação da intensidade de dormência de gemas de fruteiras de clima temperado. Revista Brasileira de Fruticultura 34: 936-940.

DAY K et al. 2008. Using growing degree hours accumulated thirty days after bloom to predict peach and nectarine harvest date. Acta Horticulturae 803: 163-166.

GIOVANINNI E. 2008. Produção de uvas para vinhos, suco e mesa. 3.ed. Porto Alegre: Renascença. 362p.

GREEN SR. 2007. Kiwifruit dry matter platform: exploiting water stress using summer deficit irrigation. HortResearch 36: 1-2.

HAWERROTH FJ et al. 2010. Dormência em frutíferas de clima temperado. Pelotas: Embrapa Clima Temperado. 56p. (Documentos 310).

HIDALGO L. 1980. Caracterización microfisica del ecosistema médio-planta em los viñedos españoles. 1.ed. Madrid: Instituto Nacional de Investigaciones Agrárias. Serie producción vegetal 29. 255p.

LAZZARI M. 2011. Cima e fenologia de cultivares de pessegueiro (Prunus persica) na região do Alto e Médio Vale do Uruguai, RS. Tese (Doutorado em Fitotecnia). Porto Alegre: UFRGS. 169p.

LAW ML & KELTON WD. 2000. Simulation Modeling and Analysis. 3.ed. Boston: McGraw-Hill. 760p.

LEGAVE JM et al. 2008. Selecting models of apple flowering time and understanding how global warming has had an impact on this trait. Journal of Horticultural Science and Biotechnology 83: 76-84.

MARRA FP et al. 2002. Thermal time requirement and harvest time forecast for peach cultivars with different fruit development periods. Acta Horticulturae 592: 523-529.

MILLER P et al. 2001. Using growing degree days to predict plant stages. 1.ed. Bozeman: State University Montana. 8p.

MORLEY-BUNKER MJ & SALINGER MJ. 1987. Kiwifruit development: the effect of temperature on bud burst and flowering. Weather and Climate 7: 26-30.

NAGATA RK et al. 2000. Temperatura-base e soma térmica (graus-dia) para videiras ‘Brasil’ e ‘Benitaka’. Revista Brasileira de Fruticultura 22: 329-333.

PEDRO JUNIOR MJ et al. 1994. Determinação da Temperatura-base, graus-dia e índice biometeorológico para a videira ‘Niagara Rosada’. Revista Brasileira de Agrometeorologia 2: 51-56.

PUTTI GL et al. 2000. Unidades de frio e de calor para a brotação de macieira (Malus domestica, Borkh), “Gala” e “Fuji”. Revista Brasileira de Agrociência 6: 194-196.

PUTTI GL et al. 2003. Temperaturas efetivas para a dormência da macieira (Malus domestica Borkh). Revista Brasileira de Fruticultura 25: 210-212.

RICHARDSON EA et al. 1975. Pheno-crimatografy of spring peach bud development. HortScience 10: 236-237.

RODRÍGUEZ AR. 1995. Multiple regression models for the analysis of potential cultivation areas for Japanese plums. HortScience 30: 605-610.

SCHWARTZ MD. 2003. Phenology: An Integrative Environmental Science. 1.ed. Hardcover: Tasks for Vegetation Science. 132p.

SILVEIRA SV et al. 2012. Aspectos técnicos da produção de quivi. Bento Gonçalves: Embrapa. 84p. (Documentos 79).

SOUZA AP et al. 2011a. Comparison of methodologies for degree-day estimation using numerical methods. Acta Scientiarum. Agronomy 33: 391-400.

SOUZA AP et al. 2011b. Basal temperature and thermal sum in phonological phases of nectarine and peach cultivars. Pesquisa Agropecuária Brasileira 46: 1588-1596.

SPIEGEL-ROY P & ALSTON FM. 1979. Chilling and post-dormant heat requirement as selection criteria for late flowering pears. Journal of Horticultural Science 54: 115-120.

VILLA NOVA NA et al. 1972. Estimativa de graus-dia acumulados acima de qualquer Tb em função das temperaturas máxima e mínima. Ciência da Terra 30: 1-8.

Published

2019-07-30

How to Cite

ANZANELLO, Rafael; CHRISTO, Mariane Castanho de. Lower base temperature, thermal time and grapevine phenology and kiwi cultivars. Revista de Ciências Agroveterinárias, Lages, v. 18, n. 3, p. 313–322, 2019. DOI: 10.5965/223811711832019313. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/13214. Acesso em: 17 jul. 2024.

Issue

Section

Research Article - Science of Plants and Derived Products