Spatial variability of CO2 emission, temperature and soil moisture in an area under pasture in the Amazon region, Brazil

Authors

  • Diogo André Pinheiro da Silva Universidade Federal de Minas Gerais
  • Milton César Costa Campos Universidade Federal do Amazonas
  • Bruno Campos Mantovanelli Universidade Federal de Santa Maria http://orcid.org/0000-0003-4291-1729
  • Luís Antônio Coutrim dos Santos Universidade Federal de Santa Maria
  • Marcelo Dayron Rodrigues Soares Universidade Federal do Amazonas
  • José Mauricio da Cunha Universidade Federal do Amazonas

DOI:

https://doi.org/10.5965/223811711812019119

Keywords:

LI-COR, geostatistics, Humaitá, management, spatial distribution

Abstract

Knowledge of the spatial distribution of temperature, soil moisture and CO2 emissions is essential to understand the soil as a source or drainage of CO2, as changes in use and management influence this dynamic. This study aimed to investigate the temperature, soil moisture and CO2 emissions in an area under pasture in Humaitá, AM. An area was demarcated at 70 x 70 m, with regular spacing of 10 m, totaling 64 points, measurements were carried out in both the rainy and dry season. CO2 emissions and soil temperature were recorded using portable flow chamber and temperature sensor LI-COR system (LI-8100). Moisture was assessed using portable system TDR, with subsequent descriptive statistical and geostatistical analysis. The pasture had higher emission of soil CO2 in the first collection period, characterized as rainy season. Spatial variations of CO2 emissions are closely related to climatic variables between dry and rainy periods.

Downloads

Download data is not yet available.

References

BALL BC & SMITH KA. 1991. Gas movement. In: SMITH KA & MULLINS CE. (Ed.). Soil analysis: physical method. New York: Marcel Dekker. p.511-549.

BRASIL. 1978. Ministério das Minas e Energia. Projeto Radam Brasil. Rio de Janeiro: EMBRAPA. 561p.

BRITO LF et al. 2010. Spatial variability of soil CO2 emission in different topographic positions. Bragantia 69: 19-27.

CAMARGO LA et al. 2008. Variabilidade espacial de atributos mineralógicos de um Latossolo sob diferentes formas do relevo. II - Correlação espacial entre mineralogia e agregados. Revista Brasileira de Ciência do Solo 32: 2279-2288.

CAMBARDELLA CA et al. 1994. Field-scale variability of soil properties in Central Iowa. Soil Science Society of American Journal 58: 1501-1511.

CAMPOS MCC. 2009. Pedogeomorfologia aplicada a ambientes Amazônicos do Médio Rio Madeira. Tese (Doutorado em Ciência do Solo) Recife: UFRPE. 219p.

COSTA FS et al. 2006. Métodos para avaliação das emissões de gases do efeito estufa no sistema solo-atmosfera. Ciência Rural 36: 693-700.

D’ ANDRÉA AF et al. 2010. Variações de curto prazo no fluxo e variabilidade especial do CO2 do solo em floresta nativa. Pesquisa Florestal Brasileira 30: 85-92.

D’ ANDRÉA AF et al. 2009. Variações de curto prazo nas emissões de CO2 do solo em diferentes sistemas de manejo do cafeeiro. Revista Química Nova 32: 2314-2317.

GONÇALVES ACA et al. 2001. Análises exploratória e geoestatística da variabilidade de propriedades físicas de um Argissolo Vermelho. Acta Scientiarum. Agronomy 23: 1149-1157.

HERBST M et al. 2010. Multivariate conditional stochastic simulation of soil heterotrophic respiration at plot scale. Geoderma 160: 74-82.

IPCC. 2007. Intergovernamental Panel on Climate Change. Climate change 2007. Fourth Assessment Report on climate change impacts, adaptation and vulnerability of the Intergovernamental Panel on Climate Change. Cambridge: Cambridge University. 939p.

JANSSENS IA et al. 2000. Assessing forest soil CO2 efflux: an in situ comparison of four techniques. Tree Physiology 20: 23-32.

LA SCALA JÚNIOR N et al. 2012. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities. Brazilian Journal of Biology 72: 775–875.

LA SCALA JÚNIOR N et al. 2009. Fractal dimension and anisotropy of soil CO2 emission in an agricultural field during fallow. International Agrophysics 23: 353-358.

MARIKO S et al. 2007. Effects of irrigation on CO2 and CH4 fluxes from Mongolian steppe soil. Journal of Hidrology 333: 118-123.

PANOSSO AR et al. 2008. Variabilidade espacial da emissão de CO2 em Latossolo sob cultivo de cana de açúcar em dois sistemas de manejo. Revista de Engenharia Agrícola 28: 227-236.

PANOSSO AR et al. 2009. Variabilidade espacial da emissão de CO2, da temperatura e umidade de um Latossolo desprovido de vegetação sob diferentes lâminas de molhamento. Semina: Ciências Agrárias 30: 1017-1034.

PINTO-JUNIOR OB et al. 2009. Efluxo de CO2 do solo em floresta de transição Amazônia Cerrado e em área de pastagem. Acta Amazônica 39: 813-822.

ROBERTSON GP. 1998. GS+ Geostatistics for the environmental sciences: GS+ user’s guide. Plainwell: Gamma Design Software. 152p.

SCHWENDENMANN L et al. 2003. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, la selva, Costa Rica. Biogeochemistry 64: 111-128.

SCOTT-DENTON LE et al. 2003. Spatial and temporal controls of soil respiration rate in a highelevation, subalpine forest. Soil Biology and Biochemistry 35: 525-534.

SILVA AS et al. 2010. Variabilidade espacial do fósforo e das frações granulométricas de um Latossolo Vermelho Amarelo. Revista Ciência Agronômica 41: 1-8.

SOUZA ZM et al. 2009. Geoestatística e atributos do solo em áreas cultivadas com cana-de-açúcar. Ciência Rural 40: 48-56.

TEIXEIRA DDB et al. 2011. Soil CO2 emissions estimated by different interpolation techniques. Plant and Soil 345: 187-194.

TRANGMAR BB et al. 1986. Application of geostatistics to spatial studies of soil properties. Advances in Agronomy 38: 45-94.

VIEIRA SR et al. 2010. Jack knifing for semivariogram validation. Bragantia 69: 97-105.

WANG G et al. 2002. Spatial and temporal prediction and uncertainty of soil loss using the revised universal soil loss equation: a case study of the rainfall-runoff erosivity R factor. Ecological Modelling 153: 143-155.

WARRICK AW & NIELSEN DR. 1980. Spatial variability of soil physical properties in the field. In: HILLEL D. (Ed.) Applications of soil physics. New York: Academic Press. p.319-344.

WEBSTER R & OLIVER MA. 2007. Geostatistics for environmental scientists statistics in practice. 2.ed. Chichester: Wiley. 315p.

XU M & QI Y. 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology 7: 667- 677.

YIM MH et al. 2003. Spatial variability of soil respiration in a larch plantation: estimation of the number of sampling points required. Forest Ecology and Management 175: 585-588.

Published

2019-02-08

How to Cite

SILVA, Diogo André Pinheiro da; CAMPOS, Milton César Costa; MANTOVANELLI, Bruno Campos; SANTOS, Luís Antônio Coutrim dos; SOARES, Marcelo Dayron Rodrigues; CUNHA, José Mauricio da. Spatial variability of CO2 emission, temperature and soil moisture in an area under pasture in the Amazon region, Brazil. Revista de Ciências Agroveterinárias, Lages, v. 18, n. 1, p. 119–126, 2019. DOI: 10.5965/223811711812019119. Disponível em: https://revistas.udesc.br/index.php/agroveterinaria/article/view/10155. Acesso em: 30 jun. 2024.

Issue

Section

Research Article - Science of Soil and Environment