Effect of tembotrione herbicide on potato development
DOI:
https://doi.org/10.5965/223811711732018318Keywords:
Atlantic, Carryover, Solanum tuberosum L.Abstract
Tembotrione herbicide residues from maize crops in the soil can affect the growth of sensitive crops in succession, such as potatoes. In this sense, this study sought to evaluate the residual effect of tembotrione on growth and development of potato plants. A field experiment with randomized blocks design with four replications was conducted. The treatments were incorporated to the soil one day before the planting of the Atlantic potato cultivar and consisted of four doses of tembotrione: 8.4; 16.8; 33.6 and 50.4 g ha-1; representing 8.4; 16.8; 33.6 and 50.0% of the recommended dose for maize, and a control treatment (without herbicide and weeding). Fresh matter mass of tuber (FMMT), number of stems (NS), number of tubers (NT) per plant and total dry matter mass (aerial parts and stem) (DMM) were evaluated at 60 and 90 days. FMMT, NT and DMM decreased with increasing doses of tembotrione. The largest reductions on both evaluated seasons were found for the 50.4 g ha-1 i.a. dose. The number of stems was not influenced by the tembotrione herbicide doses regardless of evaluated season. The results indicated that the presence of tembotrione in soil reduced growth and the number of tubers produced by potato plants.
Downloads
References
ABIT MJM et al. 2009. Differential response of grain sorghum hybrids to foliar-applied mesotrione. Weed Technology 23: 28-33.
BARCHANSKA H et al. 2016. Degradation study of mesotrione and other triketone herbicides on soils and sediments. Journal of Soils and Sediments 16: 125-133.
BAYER CROPSCIENCE 2017. Bayer CropScience Brasil. Soberan® [Herbicida]. Disponível em: https://www.agro.bayer.com.br/produtos/soberan. Acesso em: 10 jul. 2017.
BEUKEMA HP & ZAAG D. 1990. Introduction to potato production. Wageningen: Pudac. 208p.
BIEMOND H & VOS J 1992. Effects of nitrogen on the development and growth of the potato plant. 2. The partitioning of dry matter, nitrogen and nitrate. Annals of Botany 70: 37-45.
CALVAYRAC C et al. 2013. Photolysis of tembotrione and its main by-products under extreme artificial conditions: comparison with another β-triketone herbicide. Science Total Environment 452-453: 227-232.
CONCEIÇÃO MK et al. 2004. Partição de matéria seca entre órgão de batata-doce (Ipomoea batatas (L.) Lam), cultivares Abóbora e Da Costa. Revista Brasileira de Agrociências 10: 313-316.
EBERLEIN CV & GUTTIERI MJ. 1994. Potato (Solanum tuberosum) response to simulated drift of imidazolinone herbicides. Weed Science 42: 70-75.
ČEPL J & KASAL P. 2010. Weed Mapping – A way to reduce herbicide doses. Potato Research 53: 359-371.
EVANGELISTA RM et al. 2011. Qualidade nutricional e esverdeamento pós-colheita de tubérculos de cultivares de batata. Pesquisa Agropecuária Brasileira 46: 953-960.
EMBRAPA. 2013. Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa Agropecuária de Solos. Sistema brasileiro de classificação de solos. 3.d. Brasília: Embrapa Solos. 342p.
FELTRAN JC & LEMOS LB. 2005. Características agronômicas e distúrbios fisiológicos em cultivares de batata. Científica 33: 106-113.
HESS FD. 2000. Light-dependent herbicides: an overview. Weed Science 48: 160-170.
IBGE. 2017. Instituto Brasileiro de Geografia e Estatística. Indicadores IBGE: Estatística da Produção Agrícola. Disponível em: ftp://ftp.ibge.gov.br/Producao_Agricola/Fasciculo_Indicadores_IBGE/estProdAgr_201701.pdf. Acesso em: 10 jul. 2017.
LENIS JI et al. 2006. Leaf retention and cassava productivity. Field Crops Research 95: 126-134.
MANCUSO MAC et al. 2011. Efeito residual de herbicidas no solo ("Carryover"). Revista Brasileira de Herbicidas 10: 151-164.
MARIS B. 1988. Correlations within and between characters between and within generations as a measure for the early generation selection in potato breeding. Euphytica 37: 205-224.
MELO CAD et al. 2016. Carryover de herbicidas em sistemas cultivados com olerícolas. Revista Brasileira de Herbicidas 15: 67-78.
MELO PD et al. 2003. Análise do crescimento da cultivar de batata Ágata. Batata Show 3: 16-17.
MILLER JN & REGEHR DL. 2002. Grain sorghum tolerance to postemergence mesotrione applications. North Central Weed Science Society 57: 136-143.
NOVO MCSS & MIRANDA FILHO HS. 2006. Tuberização de dois cultivares de batata sob aplicação de sulfoniluréias. Planta Daninha 24: 115-121.
PETER GF & THORNBER JP. 1991. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. Journal of Biological Chemistry 266: 16745-16754.
PRATA F et al. 2003. Glyphosate sorption and desorption in soils with distinct phosphorus levels. Scientia Agricola 60: 175-180.
REIS MR et al. 2015. Manejo de plantas daninhas do gênero Amaranthus em olerícolas. In: INOUE MH et al. Manejo de Amaranthus. São Carlos: RiMa Editora. p. 173-182.
RIDDLE RN et al. 2013. Crop response to carryover of mesotrione residues in the field. Weed Technology 27: 92-100.
SILVA LAS & PINTO CABP. 2005. Duration of the growth cycle and the yield potential of potato genotypes. Crop Breeding and Applied Biotechnology 5: 20-28.
SILVA FL et al. 2009. Caracterização morfofisiológica de clones precoces e tardios de batata visando à adaptação a condições tropicais. Bragantia 68: 295-302.
SOUZA ZS. 2003. Ecofisiologia. In: PEREIRA AS & DANIELS J. (Ed.). O cultivo da batata na Região Sul do Brasil. Brasília: Embrapa. p.80-105.
TARARA G et al. 2009. Environmental fate of tembotrione. Bayer CropScience Journal 62: 63-78.
TRIGO C et al. 2014. Influence of Soil Biochar Aging on Sorption of the Herbicides MCPA, Nicosulfuron, Terbuthylazine, Indaziflam, and Fluoroethyldiaminotriazine. Journal Agricultural and Food Chemistry 62: 10855–10860.
PPDB. 2017. THE PESTICIDE PROPERTIES DATABASE. Developed by the Agriculture & Environment Research Unit (AERU). Disponível em: http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1118.htm. Acesso 10 jul. 2017.
VIVIAN R et al. 2007. Persistência e lixiviação de ametryn e trifloxysulfuron-sodium em solo cultivado com cana-de-açúcar. Planta Daninha 25: 111-124.
WALL DA. 1994. Potato (Solanum tuberosum) response to simulated drift of dicamba, clopyralid, and tribenuron. Weed Science 42: 110-114.
ZELITCH I. 1975. Improving the Efficiency of Photosynthesis. American Association for the Advancement of Science 188: 626–633.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista de Ciências Agroveterinárias (Journal of Agroveterinary Sciences)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors publishing in this journal are in agreement with the following terms:
a) Authors maintain the copyrights and concede to the journal the copyright for the first publication, according to Creative Commons Attribution Licence.
b) Authors have the authority to assume additional contracts with the content of the manuscript.
c) Authors may supply and distribute the manuscript published by this journal.