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Abstract 

 

This article is associated with a broad research addressing musical variation, whose 

main objective is the systematization of the analysis through the elaboration of an orig- 

inal analytical model. A new version of this model proposes a formal approach based on 

principles of the transformational theory. The present article is focused on the notion 

of variation isolated from a contextual framework (that is, out of temporal perspectives), 

setting the basis for further exploration. .Some original concepts, like derivative work, 

derivative space, attributes, among others, provide means for measurement of similarity 

relations between referential and derived musical ideas, as well as graphic representa- 

tion for these relationships. 

 
Keywords: Variation. Model of Derivative Analysis. Transformational theory. Simi- 

larity relations between musical ideas. 
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1 Introduction 

 

This paper integrates a broad research on musical variation intended basically to 

systematize the analysis of organically-constructed musical pieces. Since 2011 a model 

for derivative analysis (identified by the acronym MDA) has been developed through the 

elaboration of original premises, concepts, terminology, and the incorporation of meth- 

odological tools and strategies. The practical application of this model in a number of 

analytical studies since then has led to important improvements and route corrections, 

aiming the ideals of formalization, efficiency, and comprehensiveness.1 

The research’s main general theoretical framework is centered on the principles of 

Grundgestalt (normally translated as "basic shape") and developing variation, both cre- 

ated by Arnold Schoenberg, being associated with an organicist conception of musical 

creation, based on gradual derivation and intense economy of means. These concepts 

are among the most powerful and far-reaching of Schoenberg's formulations on the 

compositional domain forming a theoretical complex which has become an important 

academic subject in the last decades.2 

A problematic issue normally faced by analysts is how to describe and label proper- 

ly processes of developing variation and their outcomes (i.e., the variants created during 

these processes) in a sufficiently precise, concise, and systematic manner. This difficulty 

is due mainly to the indefinite ways in which variation techniques can creatively be used 

by a composer, considering not only “canonic” operations (like inversion, augmentation, 

etc.), but also hybrid types or even purely idiosyncratic forms of transformation, fruit of 

contextual situations and of the composer’s own invention. On the other hand, there is 

a considerable, inherent margin of subjectivity in the task of the interpretation of deriv- 

ative relations. 

The main motivation for the creation of MDA was precisely the search for mini- 

mizing the subjectivity of thematic-motivic analysis through the elaboration of a system 

sufficiently provided of consistent conceptual and methodological tools, in a process 

that has been gradually consolidated along the last years. 

The current version of the model proposes to correlate the notion of variation to 

some basic principles of the transformational theory. Under this perspective, variation 

can be considered as a special action which, when applied to a given object (as a mu- 

sical motive), produces a transformed, but related version of that object. This lies in 

accordance with Steve Rings, for whom the emphasis in transformations "is on the rela- 

tionships between musical entities, not on the entities as isolated monads. Transforma- 

tional theory thematizes such relationships and seeks to sensitize the analyst to them" 

(RINGS, 2011, p.10, italics in the original). 
 
 

1 For some theoretical formulations and analytical applications, see MAYR (2018), MAYR; ALMADA (2016, 2017a, 2017b), ALMADA  

(2011, 2013, 2015, 2016, 2017, 2019). 

2 Among other scholars who contributed for the expansion of Grundgestalt-Developing Variation theory, I could cite Joseph Rufer (1952), 

David Epstein (1980), Patricia Carpenter (1983), Walter Frisch (1984), Severine Neff (1984), Michael Schiano (1992), Jack Boss (1992), Ethan Hai- 

mo (1990, 1997), Stephen Collison (1994), Yuet Ng (2005), and Brent Auerbach (2005). 
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By exploring this this new approach, I am mainly interested in two aspects: (1) the 

nature of the relationships between a musical idea of reference and its possible trans- 

formed versions (aiming specifically at similarity relations); and (2) the manners in which 

these transformations can be implemented, which leads to a process of formalization 

inspired by the ideas of David Lewin (1987) and some of his followers.3 

The present paper is focused on the first of these aspects, introducing basic con- 

cepts, terminology, and spatial representation, as well as an initial, simple methodolog- 

ical approach for measurement of similarity of musical variants (here limited only to 

situations with tonal contexts, and compatible cardinalities). More complex alternatives 

and a detailed discussion about the formal implementation of transformational opera- 

tions will be addressed in future studies. 

 

2 Basic definitions 

 

A referential musical unity P (stands for "parent") is a short melodic sequence, rel- 

atively complete in itself, in which pitch and temporal structures play a special role.4 Let 

these structures be classified as the primary domains of P. The harmonic context (not 

necessarily tonal) in which P is (explicitly or not) inserted is considered its secondary 

domain.5 Figure 1 presents a simple instance of P (this example will be used as reference 

along the article). 
 
 

 

Figure 1: Example of referential idea P. 

In the present context, variation (V) is a generic function that, when applied to P 

yields a related idea C ("child"), i.e., a (someway) transformed version of P. Let us assume 

that P and C are two members of the set which contains a conceptually infinite number 

of possible musical ideas. C is then said as derived from P, or a variant of it, or even that 

it is a derived idea from the referential P. The adjective "generic" that qualifies the noun 
 

3 As for example, Edward Gollin (2000), Darin Hoskinson (2006), and Steven Rings (2011). 

4 Informally, it is possible to associate the concept of referential idea with the common notion of motive. This is also similar to Scho- 

enberg’s definition of musical idea: “A musical idea (…), though consisting of melody, rhythm, and harmony, is neither one nor the other alone, but 

all three together” (SCHOENBERG, 1984, p.288). 

5 Evidently, the model could also include other secondary domains, like timbre, dynamics, texture, etc., which would contribute to in- 

crease largely its complexity. Aiming at simplicity and concision, I opted therefore to select only harmonic context in this category. The notion of 

domains can be associated with the concept of (primary and secondary) parameters, proposed by Leonard Meyer (1989). 
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"function" in the definition of V reflects both assumptions that P is in some way trans- 

formed by the action of V (i.e., it does not matter yet how)6 and that C, the output of this 

transformation, is (also in some way) related to the input P. In other words, V generically 

represents all possible manners in which P can be transformed into C.7 Algebraically, it 

is then possible to express C in function of P: 

 
C = V(P) 

Equation 1: C in function of P. 

 
The syntactic, ordered interaction of the three elements, P, V, and C will be from 

now on referred as derivative work. 

 

2.1 Derivative space 

 

A derivative work is basically qualified according to the derivative impact that it 

causes on the referential idea P.8 Alternatively, it is possible to consider the derivative 

impact directly associated with the amount of similarity/divergence of C in relation to P, 

which is expressed by the relation of similarity between both musical ideas.9 Five basic 

types are considered: 

1. Identity: when C is identical to P (or, in other words, the transformational action 

of V has no impact in the domains of P);10 

2. High similarity (or, conversely, low divergence); 

3. Medium similarity (or medium divergence); 

4. Low similarity (or high divergence); 

5. Null similarity (total divergence). 

 
Given this, the action V can be considered as resulting from the opposition of two 

basic tendencies (or "forces"), intrinsic to the transformational process of P into C: sim- 

ilarity (or coherence, or even invariance) and divergence (or contrast, or variance). The 

co-relations between them can be viewed as forming a dynamic system, plotted as geo- 

metric vectors (Figure 2). 
 

 

6 The specific manifestations of V are formalized as transformational operations. For more details about this aspect of the theory, see 

ALMADA (2019 

7 Put another way, V can be seen as forming a set that congregates all possible transformations of P. 

8 An objective measurement of derivative impact is something not addressed in the current of the model, due to the amount of variables 

which could be involved in this issue. An adequate treatment of this aspect is planned for future investigation. 

9 The quantitative aspect of this relation is discussed in section 3. 

10 In practical terms, this category can also encompass cases not as trivial as the complete identity, like, for example, changes of register, 

instrumentation, dynamics, etc. Because the domains related to these aspects are not here considered, such sorts of transformation will be clas- 

sified as identity relations. 
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Figure 2: Relation between P and C plotted as a system of vectors. 

In this graphical representation of a derivative work, the horizontal, left-to-right axis 

was arbitrated as corresponding to the dimension of “divergence”, and the vertical, top- 

down axis to “similarity”.11 P and C are spatially represented by two points situated in the 

plan and V is a vector that connects them. Thus, V can be decomposed into two orthog- 

onal vector components, Vx (representing "pure" divergence) and Vy ("pure" similarity). 

I propose a refinement of this system by establishing a value of 1.00 for both the 

maximum similarity (or else, identity) and maximum divergence between P and C, re- 

sulting in a isosceles-right triangle plotted in a Cartesian plan and defined by the co- 

ordinates of its three vertices (see Figure 3): P, representing the referential idea, at the 

origin (0,0); Q, positioned at the horizontal/divergence limit (1,0); and R, at the vertical/ 

similarity limit (0,-1). The area delimited by these points is called the derivative space 

(DS) of the referential idea P. 
 

Figure 3: Derivative space of referential idea P. 

 
 
 
 

 

11 Resulting from arbitrary choices, both axes and orientations could be exchanged in alternative spatial configurations. 
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As shown in Figure 4, vector V will reach C always on the edge QR in a point (x, x-1). 
 

Figure 4: Derivative space of P, considering a point C positioned on edge QR at coordinates (x, x-1). 

Angles α and β are then associated with the derivative impact caused by V in P: the 

greater is α, the lesser is the divergence between P and C (and, conversely, the greater 

will be the similarity between them). The opposite applies to angle β. If α = /4, then 

|Vy| = 1 and |Vx| = 0 (total divergence, type 5), and if α = 0, then |Vx| = 1 and |Vy| = 0 

(identity, type 1). Excluding these extreme cases, any other possible derivative situation 

(in any combination of similarity/divergence relation), at least conceptually, will lie in a 

continuum of real values along the edge QR. Figure 5 proposes a segmentation of the 

derivative space into bands of similarity. Each band is obtained from an angular clock- 

wise increment of /8 radians (or 22.5 degrees) over the previous one – beginning with 

the horizontal axis, which represents total divergence/null similarity, and closing with 

the identity relation (vertical axis). 
 

Figure 5: Representation of the bands of similarity on the derivative space of P. 

Table 1 presents the angular limits for the bands of similarity (for practical reasons, 

I adopt α as main parameter, measured in radians). 
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similarity 
α 

min max 

null 0 0 

low > 0 /8 

medium-low > /8 /4 

medium-low > /4 3/4 

high > 3/4 < /2 

identity /2 /2 

Table 1: Angular bands for similarity relations in the derivative space of P. 

 

2.1 Attributes 

 

The domains, primary and secondary, are composed by internal, mutually com- 

plementary entities, named attributes. Essentially, attributes correspond to abstract de- 

scriptors of structural aspects of a musical fragment, and are in MDA formatted as nu- 

meric sequences. 

The pitch domain has five attributes (Figure 6): 

p1: pitch sequence, expressed in midi pitches;12 

p2: pitch-class sequence (or p1 under modulo 12); 

p3: intervallic sequence (the arithmetic differences between contiguous elements of p1); 

p4: melodic contour (the basic outline of the melody);13 

p5: ambit (the difference between the first and the last element of p1).14 
 

Figure 6: Pitch attributes of a referential idea P. Angle brackets indicate ordered content. 

Minus signals preceding integers in p3 and p5 indicate descending intervals. 

 
 

12 Midi-pitch convention uses integers for representing equally-tempered pitches, considering 0 as C-1 (and 60 the middle C), and the 

unity as one semitone. 

13 Melodic contour (p4), the most abstract of the pitch attributes, is related to the concept coined by Robert Morris (1987), which is inten- 

ded to describe the relative movements of a melodic line, i.e., the eventual alternance of "ups" and "downs", disregarding the specific intervallic 

distances. Melodic contours can be expressed graphically or algebraically (representation that is here adopted), the latter as a vector, in which 

"0" represents the lowest point of a melody with n notes and n-1 (in case of no repetitions) the highest, with the remaining notes assigned to 

intermediary numeration, according to the topography of the line (unlike what is done for the remaining attributes, I decided to preserve Morris's 

notation for p4 , in which the numbers are sequenced without separation by commas). 

14 This attribute is intended to capture the abstract notion that musical ideas can be related by shared intervallic limits, even if their con- 

tents sharply differ. 
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At first glance, one could consider unnecessary to maintain all five attributes as de- 

scriptors of the pitch information, since some of them seem to be mutually redundant 

(notably p1, p2, and p3). Why not, instead, just to select the most specific, and precise 

of them, p1, for this purpose? As a matter of fact, however, the five attributes do not 

describe exactly the same things. The strategy of considering all of them as integrated, 

correlated descriptors allows for the system to formally capture some subtle transfor- 

mations between related musical ideas that otherwise would pass unnoticed.15 The fol- 

lowing examples help to clarify this aspect, considering five cases of variants. Three of 

them (C1, C2, and C3) can be considered as "archetypal variations": change of register, 

transpositions (chromatic and diatonic), and inversion (Figure 7.).16 
 

 
Figure 7: Five pitch variants from P: by octave displacements (C1), chromatic transposition (C2), literal inversion (C3), free 

change of notes, but keeping the original melodic contour (C4), and free change of contour, but keeping the original ambit. 

 

15 In a very detailed study about musical expectations by a listener, David Huron (2006, p.374) lists absolute pitch, pitch-class, intervals, 

contour, among others aspects, as complementary mental representations of pitch, which seems to be a solid support for my argument. The 

comparison between attributes is a central aspect in this book, and will be examined in the next section of this article. 

16 It is important to highlight that just the pitch domain is here in question. Rhythmic and metric dimensions (related, respect ively, to 

durational and contextual aspects) are therefore considered fixed, as non-relevant parameters for this case. 
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None of the five variants shares with P the exact content of attribute p1 (mismatch- 

es are indicated as underlined numbers). Their relations of similarity with P are though 

evidenced by other attributes: pitch-class sequence in C1 (a simple case of octave dis- 

placement of two events), intervallic configuration17 in C2 (chromatic transposition to a 

major third higher), metric contour in C4 (a more distant variation which shares with the 

referential form only the basic melodic outline), and intervallic ambit in C5 (a still more 

abstract relation with P, supported just by the maintenance of the distance between 

initial and final pitch events). On the other hand, C3 has none coincident attribute in 

relation to P. This suggests mistakenly that is a remote variant, contradicting the gener- 

al intuition. In the next section I will return to some of these cases, examining them in 

more details. 

The temporal domain is formed by four attributes (Figure 8):18 

t1: durational sequence, expressed in multiples of the temporal unity (sixteenth note 

as default);19 

t2: sequence of inter-onset intervals;20 

t3: metric contour;21 

t4: durational span (the sum of the durations, including eventual internal rests). 
 
 

Figure 8: Temporal attributes of P. 

Figure 9 presents some temporal archetypal variations, demonstrating the impor- 

tance of taking the four attributes together also in this domain. In the first case, resulted 

from a simple shortening of some durations, attributes t1 mismatch, but the identity of 

 
 

17 The identities of melodic contour (p4) and ambit (p5) are a consequent result when two intervallic sequence correspond exactly. 

18 As it can be observed, there are isomorphic relations between some of the pitch and temporal attributes: p1and t1; p3 and t2; p4 and 

t3; p5 and t4. Attribute p2 (pitch-class sequence) is the only pitch sequence that has no correspondence in the temporal domain. 

19 Evidently, other units can be considered according to contextual conditions. 

20 Concept created by David Temperley (2001). An inter-onset interval (IOI) is the distance measured between the onsets of two rhythmic 

contiguous events, disregarding their durations. In this manner, a rhythm formed by two eight notes, for example, has the same IOI than another 

formed by a two sixteenth separated by a sixteenth rest. 

21 The determination of the metric contour is analogous to what is done in melodic contours. In the metric case, "0" represents the event 

in the weakest position, "1" the next, and so on until the strongest event, resulting also in an algebraic vector (in order to express the correlations 

with the melodic contour, t3 is also notated without separating commas). For a detailed description of the concept of metric contour and of the 

algorithm used for calculate it, see MAYR; ALMADA (2017a). 
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both t2 and t3 evidence the strong similarity that exist between P and C1. The almost 

opposite happens with C2, in which the rhythmic configuration is metrically displaced 

by one quarter note: while t1, t2, and t4 are perfectly preserved, the metric contour 

is completely modified.22 The last two variants (C3 and C4), in spite of not presenting 

any matching of the respective four attributes, are very close to P, since they result, 

respectively, from the canonic operations of augmentation and diminution. In fact, the 

proximity between variants and the referential unity in both cases is depicted only indi- 

rectly, through the relation between the temporal spans (t4): doubled (in C3) and halved 

(in C4), an aspect that must be taken into account in the calculation of similarity in the 

temporal domain. 
 

Figure 9: Four archetypal temporal variants from P: by inserting rests among some events (C1), metric displacement (C2), 

augmentation (C3), and diminution (C4). Mismatches are indicated by underlined numbers, and corresponding attributes 

are inserted in rectangles. 

Harmonic information related to P and C (either explicitly or implicitly) is depicted 

as an algebraic vector, formed by five attributes:23 
 
 

22 Undoubtedly, C2 is the variant that most diverges from P. As a matter of fact, metric displacement is a largely employed technique 

of variation (notably, by Brahms), which can be due both to economy (with the preservation of the rhythmic configuration) and the contrast that 

results from the presentation of the idea in a different metric context. 

23 It is important to mention at this point that the current version of the model addresses uniquely tonal contexts. Alternative types of 

pitch organization (modal, atonal, serial, etc.) require adaptations concerning the harmonic domain. For the sake of space, a discussion about these 

possibilities will not be pursued in the present article. 
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h1: referred to the key (expressed as a pitch class); 

h2: referred to mode (by convention, 0 = major mode and 1 = minor mode); 

h3: referred to chordal quality (expressed as a code number between 0 and 9 – see the 

adopted conventions in Table 2); 

h4: referred to the chordal root (expressed as a pitch class); 

h5: referred to chordal bass (expressed as a pitch class); 

 
Code Quality 

0 Major triad 

1 Minor triad 

2 Diminished triad 

3 Augmented triad 

4 Dominant seventh 

5 Major with major seventh 

6 Minor with minor seventh 

7 Half-diminished 

8 Diminished seventh 

9 Other cases24 

Table 2: Codes adopted for chordal qualities (attribute h3). 

 
The harmonic accompaniment of P (see again Figure 1) is tonally centered in C 

major. Its first four events are harmonized by a C major triad in first inversion, and the 

last one by a second-inversion dominant seventh rooted in G. Therefore, there are for P 

two different harmonic vectors (that incidentally share the same low-level harmonic in- 

formation, referred to key and mode), the first one associated with events 1 to 4 (labeled 

as h
1-4

) and the second with event 5 (h
5
). They are formatted as follows: 

h
1-4 

= <0, 0, 0, 0, 4> (to be read as “first-inversion of C major triad inside the key of C 

major”). 

h
5 
= <0, 0, 4, 7, 2> (to be read as “second-inversion of G7 chord inside the key of C major”). 

 
As done previously for the primary domains of pitch and time, Figure 10 shows 

four cases of archetypal harmonic variations (I am assuming here that the key signa- 

tures of the examples unambiguously inform their respective tonal contexts): chromatic 

modulation (C1); diatonic chordal change (C2), with the substitution of C major triad 

(contextualized as the tonic I) by E minor triad (iii); modal interchange (C3); and a simple 

inversion of the original chord (C4). Each situation presents a different configuration of 

the harmonic vector. 
 
 
 
 

24 Since the remaining eight categories encompass the majority of chordal qualities in usage in common-practice music, it seems unne- 

cessary to specify additional possible types. 
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Figure 10: Four archetypal harmonic variants from P: chromatic modulation (C1), diatonic chordal change (C2), mode 

interchange (C3), and inversion (C4). Mismatches are indicated by underlined numbers. 

The multidimensional nature of a musical idea, expressed by the set of domains/ 

attributes, can be better displayed in the format of a matrix (identified with the letter M). 

While the number of rows of M is fixed in twelve (corresponding to the complete set 

of attributes, encompassing primary and secondary domains), the number of columns 

varies according to the total of events present in the referential idea.25 The first four 

 

25 In other words, there is a one-to-one correspondence between events and columns of M. Thus, the matrix of attributes related to the 

exemplified case of P has dimensions 12 x 5. 



A Transformational Approach for Musical Variation 

ORFEU, v.5, n.3, dezembro de 2020 

P. 386 de 577 

Carlos de Lemos Almada 

 

 

 
 

rows are related to the pitch domain: p1, p2, and p4 occupy respectively rows 1, 2, and 

4. Since p3 is a sequence of differences between pitches, it always has one element less 

than p1, p2, and p4. So, by convention, it is positioned in the third row, with the ambit 

(p5), formed by a unique element, occupying the last cell.26 The following three rows 

refer to the temporal domain, t1, (t2 + t4), and t3. The third section of M (rows 8-12), 

related to the harmonic domain, is filled rather vertically than horizontally, according 

to the correspondences between events and harmonic contexts. Figure 11 depicts the 

structure of the matrix of attributes of the referential idea P. 
 

 
Figure 11: Structure of the matrix of attributes of P. 

A matrix of attributes can then be considered as an algebraic equivalent of a 

given musical idea which it is related to (at least concerning pitch, temporal, and har- 

monic information). 

 

3 Measurement of similarity 

 

An important aspect of MDA is the possibility of measurement of similarity be- 

tween referential and derived ideas. This is systematically accomplished through the 

interaction of concepts and premises that were so far introduced, in combination with 

the treatment for similarity evaluation that is proposed in the book The Geometry of 

Musical Rhythm, by Gottfried Toussaint (2013). In his chapter 33, Toussaint subdivides 

the methods for measurement of similarity between objects (not necessarily musical 

ones) into two basic categories: 

 

26 A similar strategy is used in the temporal domain, considering in this case attributes t2 and t4. 
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feature-based methods and transformation-based methods. In feature-based 

methods, objects are compared in terms of the number of traits they have in 

common. In transformation-based approaches, similarity is measured by how 

little effort is required to transform one object to another. (TOUSSAINT, 2013, 

p.249, italics in the original). 

 
Touissant then describes five transformational approaches, commenting their ad- 

vantages under the standpoint of his objectives: Hamming distance, swap distance, di- 

rected-swap distance, many-to-many assignment distance, and edit distance. Because he 

is especially interested in comparing rhythms with either equal or different numbers of 

onsets and/or pulses (that is, with different cardinalities, according to the present ter- 

minology), his focus is concentrated on the most robust of them, the edit distance ap- 

proach, also called Levenshtein distance.27 Basically, this method counts "the minimum 

number of edits (or mutations) necessary to convert one sequence to the other" (TOUS- 

SAINT, 2013, p.252, italics in the original).28 Three types of operations are considered: 

insertion, deletion, and substitution. Toussaint exemplifies the application of the method 

in the transformation of the word "WAITER" into "WINE", which have different "cardinal- 

ities" (respectively, 6 and 4). The process involves two stages: (1) deletion of letters "A" 

and "R": "WAITER" → "WITE"; and (2) substitution of "T" by "N": "WITE" → "WINE".29 Figure 

12 proposes a graphic representation of this example, adapted to the MDA’s terminology. 
 

Figure 12: Representation of edit-distance method, after TOUSSAINT (2013, p.252). 

 
 

27 According to Toussaint (2013, p. 253) this is due to "its inventor, Vladimir Levenshtein (1935-2017), the father of Russian information 

theory". 

28 Although other possible methods for measurement of similarity could also be considered (Euclidean distance, for example), edit distan- 

ce was the one with the best results and that was most suitable for the necessary adaptations in the creation of the algorithms. 

29 As one can perceive in Toussaint’s example, his method takes into account only that a replacement has been applied, not what has been 

replaced (or included). In this manner, the substitution of T by N would be the same (in terms of computational “distance”) if T is replaced by, say, 

D. Although adopting this basic scheme of edition types in a global, abstract level, in practice MDA operates in a quite different manner, since the 

precise discrimination of the content of the forms which are examined plays a central role in the measurement algorithms. 
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Due to a strong alliance of simplicity and efficiency, the edit distance is an ideal 

candidate for measurement of similarity between two related musical ideas in MDA. I 

adopt here a somewhat modified version of the method, adapting it in order to deal with 

the structural particularities of the matrix of attributes. Considering a referential unity P 

and a possible variant of it, C, our adapted edition-distance approach basically counts 

the number of editions which are necessary to transform the matrix of attributes of P 

into the matrix of attributes of C. However, there is an important difference in relation 

to Toussaint's description: since the matrices are multidimensional structures, involv- 

ing musical attributes of distinct natures and meanings, the editions will be differently 

weighted, depending on the rows considered (this will be detailed in the due time). 

In the present article I will consider uniquely the simplest situation of derivative work, 

namely when P and C have the same cardinality.30 

 

3.1 General information 

 

Assuming that P and C have compatible cardinalities, the transformational types 

“deletion” and “insertion” are here out of question: only substitutions are applied in the 

mapping of P into C. In other words, the elements present in P's and C's matrices are 

always one-to-one related, and the “distance” between two corresponding elements 

will be measured as the “interval” (broadly, in David Lewin’s sense) between them.31 Fig- 

ure 13 presents a general idea of the method. Since the number of events of P and C is 

necessarily the same, their matrices of attributes are also equally formatted (say, with 

m rows and n columns). This means that a given element of the matrix of P (P
i,j
) will be 

related to one of the matrix of C positioned at same coordinates (C
i,j
) and the “distance” 

between them (δ) will be proportionally equivalent to the abstract difference of their 

contents. Thus, δ will be null if both elements are equal (implying total similarity in the 

respective locus), and will have any positive value (depending on the magnitude of the 

interval) if they are different. As a convention aiming at a rapid visualization, let us indi- 

cate non-equal elements in C inside gray cells, as depicted in Figure 13 (this will be used 

in further examples). 
 
 
 
 
 
 
 

30 The more complex cases, involving distinct cardinalities, will properly be addressed in a future study. 

31 The specific conditions of this sort of measurement will be properly formalized ahead. 
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Figure 13: General scheme of measurement of similarity between elements of P and C. 

A necessary function of the algorithm for measurement of similarity of P and C is to 

establish distinct weights for the differences between elements, according to the rele- 

vance of the musical descriptors associated. Not surprisingly, the assignment of weights 

is decisive aspect of the algorithm but, at the same time, a considerably complex task 

involving multiple possibilities. In fact, the values that will be here adopted result from 

a relatively long empirical process, combining the try-and-error method with a number 

of intuitive assumptions. 

Aiming the simplification of the process, the matrices are subdivided into sections as- 

sociated with the three domains, pitch, time, and harmony, and will be examined separately. 

 

3.2 Measurement of similarity in the pitch domain 

 

Initially, it is necessary to delimit the section of the respective matrices of attributes 

that will be worked out. Thus, define P
p 
and C

p 
as sub-matrices corresponding to the 

first four rows of the matrices of attributes, referential (P) and variant (C). Let us generi- 

cally identify these structures as matrices of pitch attributes. 

The similarity between P
p 
and C

p 
is measured considering five vectors, each one 

associated with one of the five attributes: 

• v1: vector associated with the pitch sequence (p1); 

• v2: vector associated with the pitch-class sequence (p2); 

• v3: vector associated with the intervallic sequence (p3 or d-p3); 

• v4: vector associated with the melodic contour (p4); 

• v5: vector associated with the ambit (p5); 

 
Vectors v1, v2, v3, and v4 have n elements, corresponding to the cardinality of P

p 

and C
p
. Vector v5 is in fact a scalar, since it is always formed by a single element. The 

obtaining of the five vectors proceeds in a similar manner, but with some particular dif- 

ferences, as follows: 
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• Vector v1 results from the absolute difference between the first row of C
p 
and P

p
. Formally, 

v1 = |C
p
(1, :) – P

p
(1, :)| 

• Vector v2 results from the absolute difference between the second row of C
p 

and P
p
, 

considering the operation of modulo 12. Formally, 

v2 = |mod12(C
p
(2, :) – P

p
(2, :))| 

• Vector v3 results from the absolute difference between the third row of C
p 
and P

p
, 

disregarding the respective last elements (since they are related to ambit, p5). Formally, 

v3 = |C
p
(3, 1:end–1) – P

p
(3, 1:end–1)| 

• Vector v4 results from the absolute difference between the fourth row of C
p 
and P

p
. 

Formally, 

v4 = |C
p
(4, :) – P

p
(4, :)| 

• Vector v5 results from the absolute difference between the last element of the third 

row of C
p 
and P

p
. Formally, 

v5 = | C
p
(3, end) – P

p
(3, end)| 

 
After this, a five-element related structure, called pitch vector (vp), is created from 

the ordered sum of the elements of v1 to v4, followed by v5, such that 

vp = <sum(v1), sum(v2), sum(v3), sum(v4), v5> 

 
The five elements of vp are then assigned to weights, which are organized also as 

a five-entry vector (wp), such that 

wp = <15, 15, 40, 25, 5> 

 
This hierarchical disposition of values (as said above, obtained after empirical at- 

tempts) reflects the intuition that the intervallic organization of a musical motive plays 

a more decisive role in the characterization of its pitch structure. The abstract melodic 

contour occupies a second place, followed by pitch and pitch-class sequences, with the 

ambit becoming the lesser influence of the descriptors. 

A definitive index representing the edition-distance in the pitch domain is then 

calculated as the dot product
32 of vectors vp and wp. Let us call this index a (provisional) 

pitch penalty (labeled as kp’), which is intended to express the degree of dissimilarity 

between P and C in the isolated domain of pitch. Formally, 

 

 
Equation 2: Provisional pitch penalty. 

As a final measure, kp’ shall be normalized inside values 0.00 (referring to maximal 

similarity) and 1.00 (representing maximal dissimilarity), in order to provide both coher- 
 

32 The dot product of two vectors of equal size multiplies corresponding elements of the vectors and sum the results, returning a single 

number. 
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ence and standardization to the system, considering that analogous penalties will be 

also assigned to the temporal and harmonic domains. The normalized pitch penalty (kp) 

is obtained from the formula 
 

 

 

 

Equation 3: Normalized pitch penalty (first version). 

Where kp’ is the provisional pitch penalty, kp
min 

and kp
max 

are, respectively, the min- 

imal and maximal pitch penalties. Assuming kp
min 

= 0.00, Equation 3 is reduced to 

 

 
Equation 4: Normalized pitch penalty (concise version). 

While it is almost trivial to establish a relation of maximal similarity between two 

objects (formalized in the present proposal when the matrix of pitch attributes of C is 

a copy of that of P), the determination of a "maximally contrasting" structure in rela- 

tion to a referential one is a considerably problematic task. Obviously, contrast is not 

an absolute quality. Likewise, the idea of a clear-cut border separating similar objects 

from entirely dissimilar ones is almost nonsense. As a matter of fact, we can talk about 

(conceptually) infinite possibilities for contrasting motives, in also infinite gradations 

of dissimilarity. From this, it is easy to conclude that many and many objects can be 

considered as perfectly contrasting in relation to a given reference. In other words, the 

pitch configuration we need as “maximally” dissimilar for the normalization process can 

be realized in any way provided it contrasts sufficiently in respect to the referential ma- 

terial.33 Given this, Figure 14 proposes a possible "maximally-contrasting" pitch config- 

uration related to the musical idea of Figure 1, depicting also the stages for calculation 

of the pitch penalty, in this case corresponding to a maximum value (labeled, therefore, 

as kp
max

). Since only the domain of pitch is here in question, both ideas are musically 

notated as open-headed notes, disregarding their respective rhythmic-metric contexts. 

The figure also depicts the calculation of pitch penalty. 
 
 
 

 

33 Since we are dealing with a fuzzy, relative relation, is not necessary to create a specific contrasting limit for any referential idea one 

wants to analyze. This means that the maximal value here proposed for dissimilarity will be adopted for all similar situations. 
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Figure 14: Two contrasting pitch configurations, used for the calculation of a possible maximal pitch penalty (kpmax). 

The algorithm can be tested now with three of the cases of archetypal variation 

of pitch domain presented in Figure 7: C1, C2, and C5. Let label the first variant of P
p 
as 

C1
p
, reproduced in Figure 15 as a pitch abstraction. 
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Figure 15: Calculation of pitch penalty in the comparison between Pp and C1p. 

Before continuing, some reflection shall be made considering the particularity of 

this case. As previously introduced, this variant was created by simple changing of regis- 

ter of two pitches of P
p
: the second one (E

4
), sent an octave higher to E

5
, and the fourth 

(A
4
), transposed an octave lower to A

3
. Intuitively, these are very superficial transforma- 

tions, an assumption that is perfectly captured by the null values of v2 (which deals with 

pitch classes). However, these simple changes disturb profoundly the intervallic vector, 

v3, which is incidentally the most weighted in the algorithm, resulting into a dispro- 

portionally high penalty, distorting the perception of similarity between referential and 

variant ideas. This leads to an adjustment of the algorithm, in order to enable it to treat 

similar situations in a more realistic manner. It is formulated as a rule (other similar rules 

will be eventually added in further stages): 
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Adjustment rule #1 (pitch domain): Any “12” inside v3 shall be reduced to one third (i.e., 

to “4”).34 Formally, 

if v3 = <x, y, …, 12, …, z>, then v3 = <x, y, …, 4, …, z>. 

 
The application of rule #1 in the calculation of the pitch penalty for C1p results into 

a more appropriate, lower value: kp = 0.28. 

 

The second variant C2
p 
results from a chromatic transposition of P

p 
by four as- 

cending semitones, as shown in Figure 16). Accordingly, only the original pitch and 

pitch-class sequences are transformed. 
 

Figure 16: Calculation of pitch penalty in the comparison between Pp and C2p. 
 

34 The choice of this rate of reduction results from empirical tests for adjusting the algorithm to many different cases. The same argu- 

mentation can be extended to the following adjustment rules. 
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In spite of the lower value obtained for kp (corresponding to the intuition that 

both ideas are closely related), another adjustment in the algorithm becomes necessary, 

preventing from eventual incoherence. Such argument can be easily understood if we 

consider that chromatic transpositions by different number of semitones will produce 

(in some cases, sharply) different values of penalties, when the algorithm is applied. This 

goes against the scientific knowledge35 that argues that distinct levels of transposition 

should affect equality (and in a very low rate) the evaluation of similarity. As an illustra- 

tion of this distortion, consider two different ascending-chromatic transpositions of P
p
, 

by one and nine semitones. The application of the algorithm in both cases will result 

for kp, respectively, 0.04 and 0.33, a difference of more than 1000%. Given this, a new 

adjustment rule must be proposed: 

 
Adjustment rule #2 (pitch domain): If v1 and v2 are formed by the replication of a unique 

number, substitute its eventual occurrences by “2” (in both vectors), not mattering the 

magnitude of the original number. Formally, 

if v1 = <x, x, …, x> and v2 = <y, y, …, y>, then v1 = v2 = <2, 2, …, 2> 

 
In the case of C2

p
, since v1 = <4, 4, 4, 4, 4>, it shall be replaced by v1 = <2, 2, 2, 2, 

2>, just like v2 (this procedure will be adopted from now on for any possible transposi- 

tion, that become, therefore, completely equivalent). Consequently, the pitch penalty of 

C2
p 

is updated to 0.07. 

 
Lastly, Figure 17 depicts the calculation of pitch penalty for C5

p
, which keeps only 

the ambit as common attribute with the referential material. 
 
 
 
 
 
 
 
 

 

35 See, for example, Huron (2006). 
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Figure 17: Calculation of pitch penalty in the comparison between Pp and C5p. 

 
3.3 Measurement of similarity in the temporal domain 

 

Taken as basis the edition-distance method elaborated for evaluating the pitch 

structure, a similar algorithm was elaborated for the temporal domain. Firstly, define the 

sections of the matrices of attributes of both P and C which will be considered, namely, 

limited by rows 5 to 7. Name these sections as, respectively, P
t 
(or the matrix of temporal 

attributes of P) and C
t 
(or the matrix of temporal attributes of C). Now, define four dif- 

ference vectors: 

• v1: associated with the durational sequence (t1), v1 = |C
t
(1, :) – P

t
(1, :)|; 

• v2: associated with the IOI sequence (t2), v2 = C
t
(2, 1: end–1) – P

t
(2, 1: end–1); 

• v3: associated with the metric contour (t3), v3 = |C
t
(3, :) – P

t
(3, :)|; 

• v4: associated with the temporal span (t4), v4 = |C
t
(2, end) – P

t
(2, end)|. 
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As done before, the entries of the vectors v1 to v3 are summed and the results, to- 

gether with the scalar v4, are ordered into a structure called temporal vector (vt), such that 

vt = <sum(v1), sum(v2), sum(v3), v4> 

 
A four-entry vector of weights, calibrated for the temporal characteristics is then 

established as 

wt = <15 45 30 10> 

 
This reflects the intuition that the intervals between onsets (IOIs) are the most de- 

cisive factor in the definition of a rhythm, followed by its metric localization. According 

to the current conception, duration and temporal span are only secondary descriptors. 

Like the case of pitch, a provisional penalty for temporal domain (denoted as kt’) is 

calculated as the dot product of vt and wt. And once again, for a matter of coherence, 

kt’ must be normalized, which requires a minimal and maximal value for temporal pen- 

alty. Since ktmin (corresponding to an exact copy of a rhythmic configuration) can be 

settled as convention to zero, the normalized temporal penalty (kt) will result from the 

division of kt’ and a (possible) maximal value (kt
max

). As discussed in the last section, since 

the process of measurement of similarity involves always objects which are someway 

related, for this purpose it would suffice only to conceive a rhythmic configuration pro- 

foundly contrasting in relation to P
t 
(among many possible alternatives), as that depict- 

ed in Figure 18. 
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Figure 18: Two contrasting temporal configurations, used for the calculation of a possible maximal temporal penalty (ktmax). 

As a test for the algorithm for measuring temporal similarity I select the second and 

the third of the four variants introduced in Figure 9 (here denoted as C2
t 
and C3

t
). 

Variant C2
t 
is a perfect copy of P

t
, only metrically dislocated by one eight-note 

(Figure 19). However, this simple transformation is responsible for a establishing a me- 

dium dissimilarity in relation to P
t
, evidencing the decisive importance of meter in rhyth- 

mic characterization. 
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Figure 19: Calculation of pitch penalty in the comparison between Pt and C2t. 

Variant C3
t
, compared to P

t 
in Figure 20, presents an exact duplication of the orig- 

inal durations (an augmentation in compositional jargon). The high value obtained for 

penalty is quite counter-intuitive, since in this case durational and IOI proportions are 

kept unaltered. Indeed, the parenthood between a given rhythmic configuration and its 

augmented version (the same would be applicable to the reverse case, i.e., diminution) 

is easily perceived, everything else being constant. A third point of interest concerns the 

odd discrepancy between the metric contours of P
t 
and C3

t
, also contrary what would 

be expected (since durational proportions are strictly maintained). 
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Figure 20: Calculation of pitch penalty in the comparison between Pt and C3t. 
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Let us examine firstly this last issue. As a matter of fact, the discrepancy of C3t's 

metric contour is only apparent: because the durations were duplicated, it would be 

also necessary to consider the duplication of the metric contour, in other words, treat 

the variant in hypermetrical terms.36 That is, the segment shall be considered as a unity, 

in this case formed by two 4/4 measures (or, alternatively, one 8/4 measure). From this, 

the metric contour of C3
t 
should be rewritten as <41302>, thus mapping the original 

contour. This obviously impacts the calculation of the corresponding temporal penalty, 

which is then updated: kt ≈ 0.82. 

Allying this to the question of the high (and discrepant) values of dissimilarity of 

both variants, a new adjustment rule (with three stages) must be formulated, in order to 

improve the algorithm. 

 
Adjustment rule #3 (temporal domain): If the division of the elements of row P

t
(1, :) by 

the corresponding elements of row C
t
(1, :) results into a replicated number x (normally 

x = 2 or ½), then 

(a) set all values of v1 and v2 to "1". Formally, 

if <Pt(1, 1) / Ct(1, 1), Pt(1, 2) / Ct(1, 2), …, Pt(1, n) / Ct(1, n)> = <x, x, …, x>, then 

v1 = v2 = <1, 1, …, 1>. 

(b) replace v3 with the content of row Pt(3, :). Formally, 

v3 = Pt(3, :). 

(c) set v4 to "½". 

 
Applying this rule to the algorithm, the penalties of C3t is recalculated to a more realistic 

value: kt ≈0.23. 

 

3.4 Measurement of similarity in the harmonic domain 

 

Due to the particular structure of the harmonic section of the matrix of attributes, 

the algorithm for measurement of harmonic similarity between two musical ideas pres- 

ents some differences in relation to those constructed for pitch and time. Firstly, there 

is just one vector (and not five or four, as in the pitch and temporal domains), called 

harmonic vector (vh), designed to measure “distances” between attributes of parent and 

child. Moreover, contrarily to those, it does not express numeric differences, but rather 

relations of congruence and divergence between harmonies, by the use of binary no- 

tation (1 = divergence / 0 = congruence) and mapping any entry of vh to one harmonic 

attribute (i.e., h1 to h5). In this manner, a perfect copy of a harmonic context would be 

represented by vector vh = <0, 0, 0, 0, 0>. 

Let the vector of harmonic weights be formatted as37 

wh = <45, 25, 15, 10, 5> 
 

36 That is, considering higher levels of metrical organization. 

37 Like in the case of the adjustment rules, the weights of vector wh were obtained after a long phase of tests. Evidently, these are not at 

all fixed values. Eventual modifications either in the weight distribution or values can be made in the future, if necessary. 
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As done before, the provisional harmonic penalty (kp’) is calculated as the dot 

product of vh and wh. Likewise, the normalized harmonic penalty (kp) is equal to the 

division of kh’ by the maximal possible harmonic penalty (kh
max

). However, contrarily to 

what was applied to the other algorithms, since vh is a binary vector, it is not necessary 

to elaborate a hypothetical contrasting example for the calculation of kh
max

, considering 

that a maximally-divergent harmony will be obligatorily expressed as vh = <1, 1, 1, 1, 1>. 

Consequently, kh
max 

= <1, 1, 1, 1, 1> . <45, 25, 15, 10, 5> = 45 + 25 + 10 + 5 = 100. 

 
Let us now test the algorithm with the isolated harmonic variants presented in Fig- 

ure 10, reproduced in Figure 21 with the calculation of the respective harmonic penalties. 
 

Figure 21: Calculation of harmonic penalties in the comparison between Ph and C1h, C2h, C3h, and C4h. 

Another difference in relation to the remaining algorithms concerns the fact that 

commonly more than one event of a given musical idea has the same harmonic context 

(as in the case of Figure 1). This means that a replicated harmonic context in, say four 

events, will necessarily replicate the harmonic penalty four times. In fact, the harmonic 

penalty for a musical idea as a whole will then be calculated as the arithmetic mean of 

the individual penalties.38 
 

 

38 Due to their relative simplicity and similar structure, the three algorithms above presented can be computationally implemented wi- 

thout much effort. This initiative provides a lot of agility and efficiency in the calculation of the respective penalties. 
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3.5 Global similarity between musical ideas 

 

After obtaining the penalties concerned to the three individual domains by the re- 

spective algorithms, a global measure of the dissimilarity k between two related musical 

ideas can be yielded. This is made through a weighted combination of the three values (kp, 

kt, and kh), as disposed in Equation 5. The distribution of weights attempts to capture two 

intuitions: firstly, the strong prominence of the primary domains (pitch and time) in face of 

the secondary harmony (85% vs 15%), and secondarily, the relative greater permeability of 

pitch structures to variation in comparison with rhythmic/metric configurations.39 
 
 
 

 

 
Equation 5: Global penalty for dissimilarity. 

Three examples will provide adequate understanding of the process of determina- 

tion of a global penalty in real musical situations. Figure 22 presents three possible vari- 

ants of a referential idea P, considering transformations that affect indistinctly elements 

of the pitch, temporal, and harmonic domains. 
 

Figure 22: Three possible variants of P. 

The cases can be informally described as follows: 

C1 – presents slight modifications in pitch and temporal structures. A secondary domi- 

nant (V/V, chord label D7) is inserted as preparation for the last chord; 

C2 – the rhythmic configuration of P is preserved, but the melodic arc is freely expand- 

ed, with the harmony transposed to D minor; 

C3 – here a more substantial modification is in the temporal structure. The penultimate 

pitch is chromatically flexed. The harmonic context is kept unaltered. 

The next three figures compares P with the variants, depicting also for each case 

the respective individual and global penalties (for practical reasons, it is assumed that 

the process was now computationally automatized; therefore, only the final results are 

provided, omitting all subjacent calculations). 
 
 
 
 

39 For some support for these arguments under a cognitive perspective, see DOWLING (1978) and McADAMS and MATZKIN (2001). 
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Figure 23: Determination of global penalty for variant C1. 
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Figure 24: Determination of global penalty for variant C2. 
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Figure 25: Determination of global penalty for variant C3. 

Table 3 shows the penalties assigned to the three variants. 
 
 

variant penalty 

C1 0.20 

C2 0.33 

C3 0.40 

Table 3: Penalties obtained for variants C1-3. 
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3.5 Spatial representation of similarity relations 

 

With these data and recalling to the derivative space's model of section 2.1, it is also 

possible to plot similarity relations between musical ideas, a very attractive perspective 

to be developed in the future with analytical purposes. Figure 26 reproduces the graph 

of the Figure 4, substituting the variable x by the penalty for dissimilarity k. 
 

Figure 26: Model of derivative space (adapting Figure 4). 

For this, the calculated penalty value is associated with the horizontal projection 

(now expressing coordinate k) of point C.40 Since the vertical projection is function of 

k (i.e., f(k) = k – 1), point C’s coordinates are then properly established. The angle →, 

which is related to what I will call the derivative inclination of point C, is easily obtained 

through trigonometry (Equation 6):41 
 
 

 

Equation 6: Angle α in function of k. 

Table 4 updates Table 3, by including the variants’ coordinates, angles’ values (in 

degrees), and respective degrees of similarity. 

 
variant coordinates α β similarity 

C1 (0.20, -0.80) 76° 14° high 

C2 (0.33, -0.67) 64° 26° medium-high 

C3 (0.40, -0.60) 56° 34° medium-high 

 
Table 4: Coordinates of points C1-3, with respective angles α and β (rounded values) and degrees of similarity with P. 

 
 

40 This association is supported by the fact that the penalty represents ultimately the amount of divergence between referential and 

derived ideas. 

41 As a convention, angle α is measured clockwise. For this reason, Equation 6 uses –1.f(k) (= 1 – k), resulting in a positive number. The 

complementary angle β = 90°– α. 
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The plotting of the three points in the derivative space of P is depicted in Figure 27. 
 

Figure 27: Points C1-3 plotted in the derivative space of P. 

 
Concluding remarks 

 

This article introduced an original conception addressing systematical analysis of 

musical variation under a transformational approach, and isolated from any temporal/ 

contextual perspective. Basic concepts and methodological procedures presented in 

the study focused on the nature of the relationships between referential and derived 

ideas. The notions of domains and attributes made possible the elaboration of algo- 

rithms for quantification of similarity relations, through calculation of specific penal- 

ties, which in turn were used for graphical representation of these relations, plotted on 

the derivative space of the referential idea. It is noteworthy to add that the system has 

a great potential for computational implementation, leading to automatization of the 

processes of calculation of penalties and plotting of similarity relationships. 

As previously stated, the essential goal of the present paper is to introduce a new 

version of the analytical model, considering exclusively its most basic elements and 

some simple analytical applications. More complex situations (like non-tonal contexts 

and comparison of structures with different cardinalities) will be properly examined in 

future studies. An approach addressing the specific manifestations of function V, for- 

mally denoted as transformational operations, is described in a recently published arti- 

cle (ALMADA, 2019), which complements the present study. 

The investigation of variation across time (that is, contextualized), deeply ground- 

ed on Schoenbergian principles of developing variation and Grundgestalt and involving 

proper theoretical/methodological apparatus, represents the natural continuation of 

the research, which is intended to provide the model of a comprehensive and dynamic 

perspective concerning real-music situations. 
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