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ABSTRACT 
Rice (Oryza sativa L.) is a staple food for more than half of the world's population, but its production is 

threatened by salinity, which affects its development in both early and reproductive stages. Gamma 

radiation-induced mutation has been used to generate genetic variability and develop cultivars better 

adapted to saline conditions. However, selecting tolerant mutants is challenging due to the genetic 

complexity of salinity response and the need for large populations. In this study, 100 rice mutants (M5 and 

M6) and two control cultivars (sensitive and tolerant) were evaluated under salt stress (NaCl 120 mM) in a 

greenhouse, assessing shoot and root growth and dry weight. Despite the variability generated, no mutant 

outperformed the tolerant cultivar in all traits analyzed, highlighting the difficulty of selecting promising 

individuals from small populations. Furthermore, environmental factors may have contributed to 

inconsistencies between generations, reinforcing the need for large-scale screening. The most effective 

strategy involves initial field selection, validation under controlled conditions, and further agronomic 

reassessment. Technologies such as remote sensing-based phenotyping could improve efficiency, but they 

remain costly. Future studies should integrate new methodologies and keep the selection of salt-tolerant 

mutants in early generations (M2 and M3) from large populations, alongside yield evaluation to confirm their 

agronomic applicability under salinity conditions. 
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RESUMO  
O arroz (Oryza sativa L.) é um alimento essencial para mais da metade da população mundial, mas sua 

produção é ameaçada pela salinidade, que afeta seu desenvolvimento nos estádios iniciais e reprodutivos. 

A indução de mutações por radiação gama tem sido utilizada para gerar variabilidade genética e 

desenvolver cultivares mais adaptadas a condições salinas, porém a seleção de mutantes tolerantes é um 

desafio devido à complexidade genética da resposta à salinidade e à necessidade de grandes populações. 

Neste estudo, 100 mutantes de arroz (M5 e M6) e duas cultivares testemunhas (sensível e tolerante) foram 

avaliados sob estresse salino (NaCl 120 mM) em casa de vegetação, considerando o crescimento e o peso 

seco da parte aérea e raiz. Apesar da variabilidade gerada, nenhum mutante apresentou desempenho 

superior a cultivar tolerante em todas as características analisadas, evidenciando a dificuldade de selecionar 

indivíduos promissores em pequenas populações. Além disso, o efeito ambiental pode ter contribuído para 

a inconsistência entre gerações, reforçando a necessidade de triagem em grandes escalas. A estratégia 

mais eficiente envolve seleção inicial em campo, validação em condições controladas e posterior 

reavaliação agronômica. Tecnologias como fenotipagem remota podem otimizar o processo, mas são de 

alto custo. Estudos futuros devem integrar novas metodologias e manter a seleção de mutantes tolerantes 
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à salinidade em gerações iniciais (M2 e M3) a partir de grandes populações, juntamente com a avaliação de 

rendimento, para confirmar sua aplicabilidade agronômica em condições de salinidade. 

PALAVRAS-CHAVE: Melhoramento genético. Estresse abiótico. Radiação gama. Variabilidade 

genética. Oryza sativa L. 
 

 

 

INTRODUCTION 
 

Rice (Oryza sativa L.) is one of the most widely cultivated crops and serves as a 

staple food for more than half of the world's population (QIN et al. 2020, SINGH et al. 

2024). The growing global population demands a significant increase in rice production 

to ensure food security (QIN et al. 2020, HAQUE et al. 2021). However, climate change 

exacerbates abiotic stresses such as extreme drought, prolonged submergence, 

extreme temperatures, and high salinity, all of which threaten rice yields (HAQUE et 

al. 2021, HASSAN et al. 2023). Among these stresses, salinity is a major constraint, 

reducing rice productivity and affecting crop quality, particularly in salt-affected regions 

where food security is already at risk (CHAPAGAIN et al. 2021). 

Salinity, which affects 20% of irrigated agricultural land, is a significant challenge 

(AFZAL et al. 2023). Rice is particularly sensitive to this stress, with notable impacts 

from an electrical conductivity of around 3 dS m⁻¹ (YEO et al. 1990, QIN et al. 2020, 

RODRÍGUEZ COCA et al. 2023, MHENI et al. 2024). This sensitivity varies among 

genotypes and throughout the rice growth cycle (ZENG et al. 2001, RODRÍGUEZ 

COCA et al. 2023). This species is highly vulnerable at the early vegetative stage, 

reducing growth rate and photosynthetic efficiency, while high salinity at the 

reproductive stage leads to panicle sterility, lower seed production, and inhibited starch 

synthesis (SINGH et al. 2021, YAO et al. 2022). However, salt tolerance in the early 

vegetative stage does not correlate with tolerance at the reproductive stage (TIWARI 

et al. 2022). 

 Developing new salinity-tolerant rice cultivars is a key strategy to mitigate yield 

losses, but breeding efforts have also narrowed the genetic base, making elite cultivars 

more susceptible to biotic and abiotic stresses (MHENI et al. 2024, TEMESGEN 2021). 

Genetic variability can be increased through conventional breeding or induced 

mutations, with gamma radiation being one of the most widely used physical mutagens 

to generate genetic variations (SAEED AWAN et al. 2021, BAGHERI et al. 2022). As 

a type of ionizing radiation, gamma rays can induce beneficial mutations for traits such 

as salt tolerance, but selecting desirable mutants remains challenging due to the need 

for large populations and extensive screening under controlled conditions and in the 

field (MBA et al. 2007, CHOI et al. 2021, SARSU et al. 2023, HAQUE et al. 2021, 

AFZAL et al. 2023). Despite these difficulties, mutation breeding remains a valuable 

tool for enhancing genetic diversity and improving stress tolerance in rice. 

Improving the efficiency of selection strategies is essential to overcoming these 

challenges and facilitating the identification of superior mutant individuals for abiotic 

stress tolerance. In this context, this study aimed to explore the challenges and discuss 

specific strategies for selecting rice mutants with salt tolerance at the early vegetative 

stage applying to a small population. A collection of rice mutants obtained through 

gamma irradiation (250 and 300 Gy) in M5 and M6 generations was subjected to salt 

stress for this purpose. 
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METHODS 

Plant material 

The seeds of the BRS Pampeira cultivar were subjected to gamma radiation 

(⁶⁰Co) at doses of 250 and 300 Gy, and generations M1 to M4 were grown in the field 

as described by TEJEDA et al. (2024). In generations M5 and M6, 100 mutants, 

randomly chosen from a population of 4000 genotypes, to simulate selection in a small 

population, were characterized for salinity tolerance, with 50 genotypes from each 

radiation dose. The screening included these 100 mutants along with the control 

cultivars BRS Pampeira (salinity sensitive), from which the mutants originated, and 

BRS Bojuru (salinity tolerant). The experiment was conducted during the 2021/2022 

and 2022/2023 harvest seasons in a greenhouse at the Universidade Federal de 

Pelotas, in Capão do Leão, RS, using an intercalary control experimental design with 

three replicates. 

 The plants were grown in trays containing irrigated rice field soil, with 10 lines of 

10 seeds each, where each line corresponded to a different mutant or control cultivar. 

Salinity stress was applied when at least 50% of the plants reached stages V2 and V3 

by replacing the water layer with a 120 mM NaCl solution for seven days, until more 

than 50% of the plants exhibited salt stress symptoms (LIU et al. 2017, followed by 

morphological characterization. For growth assessment, five plants of each mutant or 

control cultivar were randomly selected from each replicate (representing 50% of the 

available plants per line) to minimize variability while ensuring a representative 

evaluation of the population. Shoot length (SL) and root length (RL) were measured in 

these five plants per replicate, totaling 15 plants per mutant or control cultivar. The 

same plants were used to determine shoot dry weight (SDW) and root dry weight 

(RDW), with tissues dried at 65 ºC for 72 hours and weighed on a precision scale, 

ensuring standardized evaluation of growth and biomass accumulation. 

Data analysis 

The obtained data were checked for normality using the Shapiro-Wilk test and 

then subjected to analysis of variance to check for significant differences among 

genotypes. The means were then grouped using the Scott-Knott test (p<0.05). The 

Genes program (CRUZ 2013) was used to carry out the analyses. Box plots were then 

constructed in the R Studio V.2024.04.2+764 program (R CORE TEAM 2020) based 

on the groupings resulting from the Scott-Knott mean comparison test. 

 

RESULTS  
 

The analysis of variance revealed a genotype effect for all variables analyzed, 

indicating an effect of the gamma-induced mutation (Figure 1). When shoot length (SL) 

is considered, in the M5 generation, mutants were classified into four groups (A–D), 

where Group A contained those with SL superior to BRS Bojuru (tolerant), Group B 

included BRS Bojuru and twenty similar mutants, and Group D clustered BRS 

Pampeira (sensitive) with twenty-four mutants showing the shortest SL. In the M6 

generation, ten groups (A–J) were formed, with Groups A, B, C, and D including 

mutants superior to BRS Bojuru, which was classified in Group E, while BRS Pampeira 

and other mutants with the shortest SL were placed in Group J. These results confirm 
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the variability induced by gamma radiation and highlight the presence of mutants with 

improved SL compared to the original cultivar. 
 

 
 

Figura 1. Shoot length (SL) of 100 mutant rice in M5 (A) and M6 (B) generations and BRS Pampeira and 

BRS Bojuru control cultivars, under salinity stress (NaCl 120mM) at early vegetative stage. 

FAEM/UFPel, 2023. 

 

For root length (RL) (Figure 2), the M5 generation mutants were divided into four 

groups (A-D), with BRS Bojuru and nineteen mutants in group A, showing superior 

performance. BRS Pampeira, along with eleven mutants, was placed in group D, 

exhibiting the lowest RL. In the M6 generation, mutants were classified into eight 

groups (A-H), with BRS Bojuru positioned in group D, having lower RL than the top 

groups but higher than the remaining ones. BRS Pampeira and fourteen mutants, with 

the shortest RL, were grouped in category H. 
 

 
 

Figure 2. Root length (RL) of 100 mutant rice in M5 (A) and M6 (B) generations and BRS Pampeira and 

BRS Bojuru control cultivars under salinity stress (NaCl 120mM) at early vegetative stage. FAEM/UFPel, 

2023. 

 

The M5 generation mutants were divided into five groups (A-E) based on shoot 

dry weight (SDW), with BRS Bojuru and forty-two mutants placed in group D, having 

lower SDW than those in groups A, B, and C (Figure 3). BRS Pampeira, along with 

twenty-two mutants, had the lowest SDW and was assigned to the last group. In the 

M6 generation, mutants were classified into ten groups (A-J), with BRS Bojuru and two 

mutants positioned in group B, showing lower SDW than only those in group A. BRS 
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Pampeira and twenty-eight mutants were grouped in category G, exhibiting lower SDW 

than the previous groups but higher than those in groups H, I, and J. 
 

 
 

Figure 3. Shoot dry weight (SDW) of 100 mutant rice in the M5 (A) and M6 (B) generations and BRS 

Pampeira and BRS Bojuru control cultivars under salinity stress (NaCl 120mM) at early vegetative stage. 

FAEM/UFPel, 2023. 

 

Genotypes in the M5 generation were classified into four groups (A-D) based on 

root dry weight (RDW), with some mutants in group A exhibiting higher RDW than BRS 

Bojuru (Figure 4). This cultivar was placed in group B along with thirty-eight mutants, 

while BRS Pampeira and eighteen genotypes were positioned in group D, having the 

lowest RDW. In the M6 generation, nine groups (A-I) were identified, with BRS Bojuru 

and two mutants in group A, showing the highest RDW among all groups. BRS 

Pampeira was placed in the last group, displaying the lowest RDW compared to the 

other genotypes. 
 

   
 

Figure 4. Root dry weight (RDW) of 100 mutant rice in generations M5 (A) and M6 (B) and BRS Pampeira 

and BRS Bojuru control cultivars under salinity stress (NaCl 120mM) at early vegetative stage. 

FAEM/UFPel, 2023. 

 

DISCUSSION  

 Mutation induction has been widely used in rice breeding, with nearly 823 mutant 

rice events released globally, particularly in Japan and China (KHANH et al. 2021). 

While breeding and domestication have historically been based on phenotypic 

selection, modern mutation breeding requires a structured and efficient selection 

process, combining field expertise with controlled screening to identify promising 



Mariano et al. 

Revista de Ciências Agroveterinárias, Lages, SC, Brasil (ISSN 2238-1171)                                      294 
 

mutants (FAO/IAEA 1968, KUMAR et al. 2021). In the case of salinity tolerance, 

selecting mutants at the early vegetative stage presents significant challenges due to 

the polygenic nature of the trait and its dependence on multiple physiological and 

genetic factors (WALIA et al. 2005, HOANG et al. 2016, LIU et al. 2022). Additionally, 

the success of mutation breeding depends not only on having enough plants to 

increase the chance of finding a desirable mutation but also on using well-adapted 

genetic backgrounds to ensure that salinity tolerance does not come at the expense of 

other agronomic traits (SINGH et al. 2021). 

In this study, some mutants performed as well as or better than the tolerant 

control, but no genotype demonstrated consistent tolerance across both generations. 

This variability is expected, as salinity tolerance is controlled by multiple genes, and 

single mutations are unlikely to confer full tolerance without additional genetic and 

physiological interactions (GALHARDO et al. 2007). Furthermore, environmental 

effects, gene expression instability, and possible residual heterozygosity from the 

mutagenic process may have contributed to differences between generations, making 

careful selection even more critical (SINGH et al. 2021). Given these challenges, a 

large population, a well-structured selection approach, including experienced scientists 

assessing plants in the field, remains essential to ensure that potential mutants are 

identified efficiently. 

Continued research combining induced mutagenesis and advanced screening 

techniques is essential to overcoming the challenges of salinity tolerance in rice, as 

the selection process requires evaluating large populations to increase the probability 

of obtaining desirable traits. However, field evaluation of salinity tolerance remains 

complex due to confounding abiotic stress factors, reinforcing the need for controlled 

environment screening, which is often limited by scale, time, and cost (GREGORIO et 

al. 1997, KIM et al. 2020). Therefore, an effective approach combines large-scale field 

screening with controlled validation, balancing genetic gains, agronomic stability, and 

the practical constraints of rice breeding programs. 

 

CONCLUSION 
 

This study demonstrated the potential of gamma radiation-induced mutation as a 

tool for generating genetic variability for salinity tolerance in rice. However, despite the 

observed variability, no genotype exhibited consistent tolerance across two 

generations, reinforcing the complexity of this trait and the limitations of small sample 

populations. Since salinity tolerance is a polygenic trait with strong environmental 

interactions, identifying truly superior genotypes requires not only larger populations 

and more refined screening methodologies but also yield assessments to confirm 

agronomic viability. Given that tolerance can only be effectively validated when yield 

performance is evaluated under stress conditions, future studies should integrate 

comprehensive phenotyping approaches that assess both vegetative and reproductive 

traits to enhance selection accuracy. Ultimately, a multi-tiered strategy combining 

large-scale mutation induction, field and controlled environment screenings, and yield 

trials will be essential to effectively develop resilient rice cultivars adapted to saline 

conditions. 
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