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RESUMO 
 

O objetivo do artigo foi avaliar o comportamento e o relacionamento de algumas medidas de variabilidade 

espacial empregadas no contexto agrícola. Foram avaliados o Grau de Dependência Espacial (SPD), o 

Índice de Dependência Espacial (SDI) e a Medida de Dependência Espacial (SDM). Obteve-se a correlação 

de Spearman entre Tamanho de amostra por hectare (n.ha-1), Coeficiente de Variação [CV (%)], SDI (%), 

SDM (%), Alcance (m) e SPD (%), em cada modelo de semivariograma. Foram comparados os 

comportamentos de SDI, SDM e SPD, em função dos distintos modelos de semivariograma. Ocorre maior 

variabilidade espacial no semivariograma exponencial. O SDI e o SDM correlacionam-se com o CV somente 

no semivariograma esférico. O SPD se correlaciona com o CV nos semivariogramas exponencial e esférico. 

O SPD tende a gerar menos classificações fracas da variabilidade espacial, de modo que sugere-se 

considerar uma variabilidade espacial moderada a partir de valores de SPD de, pelo menos, 45%. 
 

PALAVRAS-CHAVE: variabilidade dentro do campo; autocorrelação espacial; fatores de campo; 

agricultura de precisão. 

 

ABSTRACT 
 

The aim of the article was to evaluate the behavior and relationship of some spatial variability measures 

used in the agricultural context. The Degree of Spatial Dependence (SPD), the Spatial Dependence Index 

(SDI) and the Spatial Dependence Measure (SDM) were evaluated. The Spearman correlation was obtained 

between Sample size per hectare (n.ha-1), Coefficient of Variation [CV (%)], SDI (%), SDM (%), Range (m) 

and SPD (%), in each semivariogram model. The behaviors of SDI, SDM and SPD were compared, 

depending on the different semivariogram models. Exponential semivariogram generated higher spatial 

variability. The SDI and SDM measurements correlated with the CV only in the spherical semivariogram. 

The SPD correlated with the CV in the exponential and spherical semivariograms. SPD tends to generate 

fewer weak classifications of spatial variability, so it is suggested to consider moderate spatial variability 

from SPD values of at least 45%. 

KEYWORDS: within-field variability; spatial autocorrelation; field factors; precision agriculture. 
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Field observations are extensively collected to understand factors affecting agricultural productivity 

(LEROUX & TISSEYRE 2019), such as soil conditions, hydrology, climate, pests, management practices, and 

others. The variability of these factors in the field can be assessed through spatial or spatiotemporal methods, 

such as Geostatistics. 

Geostatistics is a methodology widely used in Agriculture, as the knowledge of variability within the field 

is well related to profitability (ZHAO et al. 2023), so that the interaction between Precision Agriculture and 

Geostatistics is increasingly relevant (LEROUX & TISSEYRE 2019, RODRIGUES et al. 2020a, ZHAO et al. 

2023). In geostatistical approaches, assessing the degree of spatial variability is a crucial step, typically 

conducted through metrics derived from semivariogram parameter estimates. Among the parameters of the 

semivariogram, the Range describes the spatial variability in the horizontal direction of the graph, while the 

Nugget Effect, the Contribution and the Threshold describe the spatial variability in the vertical direction of the 

semivariogram (SANTOS et al. 2018). 

Soil and agriculture attributes present variations in space and time, and metrics based on Geostatistics 

may also present different behaviors due to field factors (SANTOS et al. 2018), and evaluations and 

discussions regarding such measures of spatial dependence have been carried out in recent years (SANTOS 

et al. 2018, AMARAL & DELLA JUSTINA 2019, LEROUX & TISSEYRE 2019, PINTO et al. 2019). Therefore, 

this study aims to evaluate the behavior and relationship among different spatial variability measures used in 

agricultural settings. 

In the present study, the following measures of spatial variability were evaluated: Degree of Spatial 

Dependence (SPD) (BIONDI et al. 1994); Spatial Dependency Index (SDI) (SEIDEL & OLIVEIRA 2014, APPEL 

NETO et al. 2018); and Spatial Dependence Measure (SDM) (APPEL NETO et al. 2020). It was decided to 

present the SPD rather than the Relative Nugget Effect (RNE) (CAMBARDELLA et al. 1994), because 

SPD=100%-RNE, and the SPD has a geometric justification for its use (SEIDEL & OLIVEIRA 2015). 

Therefore, scientific articles using SDI or SDM published between 2018 and 2022 and indexed in Web 

of Science and SCOPUS databases were analyzed. In total, 10 articles were selected in the Web of Science 

and 13 articles in SCOPUS. Finally, after considering only exponential, Gaussian, and spherical semivariogram 

adjustments in soil and agricultural attributes from research conducted in Brazil, 11 articles remained 

[FIGUEIREDO et al. 2018, MENDONÇA et al. 2018, COSTA et al. 2019, PIAS et al. 2019, RODRIGUES et al. 

2019, SOARES et al. 2019, GUEDES et al. 2020, RODRIGUES et al. 2020b, BRITO et al. 2021, CURSI et al. 

2021, TAGLIARI-BALESTRIN et al. 2021] from which information was collected to form the database: Sample 

size per hectare (n.ha-1); Coefficient of variation [CV (%)]; Semivariogram model [exponential model, Gaussian 

model, spherical model]; SDI (%); SDM (%); Range (m); SPD (%). The database was made up of 193 

observations. Of these observations, 88 were fitted with exponential semivariograms, 20 with Gaussian 

models, and 85 with spherical functions. 

First, descriptive statistics were calculated, including minimum and maximum values, first and third 

quartiles, mean, median, standard deviation, and skewness coefficient. The Shapiro-Wilk normality test was 

performed to assess spatial variability measurements. Subsequently, Spearman's correlation was calculated 

between sample size per hectare (n.ha-1), CV, SDI, SDM, Range, and SPD for each semivariogram model. 

Finally, nonparametric tests were performed to compare SDI, SDM, and SPD behaviors according to different 

semivariogram models. The significance level was set at 5% (P < 0.05). Statistical analyses were performed 

using the R software (R CORE TEAM 2021). 

Table 1 shows the descriptive statistics of spatial variability measurements. The SDI values ranged from 

0.80% to 31.70% for the exponential model, 6.00% to 27.44% for the Gaussian model, and 0.09% to 20.00% 

for the spherical model. The SDI showed the highest mean in the exponential model (15.39%), followed by the 

Gaussian model (13.29%), with the spherical model exhibiting the lowest mean (8.89%). 

The SDI values, in terms of median, for the exponential, Gaussian and spherical models are 13.67%, 

11.50% and 8.15%, respectively. The median values for both exponential and Gaussian models are statistically 

equivalent. However, they differ from the spherical model, which shows the lowest median value. These 

median values align with those reported by SEIDEL & OLIVEIRA (2016), who found 10.40%, 11.70%, and 

11.00% for the exponential, Gaussian, and spherical models, respectively. According to Seidel and Oliveira 

(2016), the maximum SDI values are 31.70%, 50.40%, and 37.50% for the exponential, Gaussian, and 

spherical models, respectively. However, in this study, the Gaussian and spherical models showed maximum 

values of 27.44% and 20.00%, respectively, indicating lower-than-expected maximum spatial dependence in 

this sampling. 

The SDM, in the exponential model, varies from 1.33% to 42.20%; in the Gaussian model, from 9.42% 
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to 37.67%; and in the spherical model, it varies from 1.52% to 30.97%. The SDM shows the highest mean in 

the exponential model (22.11%), followed by the Gaussian model (19.48%), with the lowest mean observed in 

the spherical model (14.55%). The median values of the SDM are statistically equal for the exponential and 

Gaussian models (18.76% and 18.12%, respectively). In addition, they differ from the spherical model, which 

has the lowest median value (13.82%). The maximum values for the SDM, in theory, are 42.20%, 56.30% and 

44.70%, for the exponential, Gaussian and spherical models, respectively (APPEL NETO et al. 2020). 

However, in this study, the Gaussian and spherical models showed maximum values of 37.67% and 30.97%, 

respectively, indicating lower-than-expected maximum spatial dependence in this sampling. 

 

 

Table 1. Descriptive measures and multiple comparisons between medians of spatial variability measurements 

for exponential (Exp), Gaussian (Gaus) and spherical (Sph) semivariograms. 
 

Semivariogram Min Q1 Media Median* Q3 Max S CA Normality 

SDI (%) 

Exp [n=88] 0,80 7,76 15,39 13.67a 23,77 31,70 9,83 0,37 No 

Gaus [n=20] 6,00 8,07 13,29 11.50a 15,85 27,44 6,24 0,67 Yes 

Sph [n=85] 0,09 5,07 8,89 8.15b 12,00 20,00 5,12 0,32 No 

SDM (%) 

Exp [n=88] 1,33 10,80 22,11 18.76a 33,93 42,20 13,04 0,28 No 

Gaus [n=20] 9,42 13,38 19,48 18.12a 22,18 37,67 7,91 0,87 Yes 

Sph [n=85] 1,52 10,32 14,55 13.82b 18,14 30,97 6,45 0,37 Yes 

SPD (%) 

Exp [n=88] 19,41 63,54 81,64 94.25a 100,00 100,00 23,11 -0,97 No 

Gaus [n=20] 15,93 43,58 60,46 57.93b 79,54 100,00 25,41 0,06 Yes 

Sph [n=85] 0,50 33,33 52,04 47.83b 70,55 100,00 29,52 0,20 No 

Min=Minimum. Max=Max. Q1=First quartile. Q3=Third quartile. S=Standard deviation. CA=Asymmetry coefficient. 
Normality: Shapiro-Wilk test (p<0.05). *Models with equal letters do not differ according to Dunn's test at 5% probability. 

 

The SPD, in the exponential model, varies from 19.41% to 100.00%; in the Gaussian model, from 

15.93% to 100.00%; and in the spherical model, it varies from 0.50% to 100.00%. The SPD showed the highest 

average in the exponential model (81.64%), followed by the Gaussian model (60.46%), with the lowest average 

observed in the spherical model (52.04%). The exponential model showed significantly higher spatial 

dependence (94.25%) compared to the Gaussian (57.93%) and spherical (47.83%) models. To SANTOS et 

al. (2018), the median values of SPD 69.00%, 76.00% and 62.00% are observed for the exponential, Gaussian 

and spherical models, respectively. 

The SPD, in theory, varies from 0.00% to 100.00%. However, in this study, the minimum values for the 

exponential and Gaussian models were 19.41% and 15.93%, respectively, indicating that the minimum spatial 

dependence in this sampling was higher than expected. SANTOS et al. (2018) also observed higher minimum 

values for SPD, with values of 34.00%, 21.00%, and 20.00% for the exponential, Gaussian, and spherical 

models, respectively. Also, according to SANTOS et al. (2018), SPD (or RNE) tends to generate greater 

degrees of spatial dependence than would occur in theory, i.e. with a degree of spatial dependence tending to 

be stronger. 

Table 2 shows the correlations between the measures of spatial variability. For the exponential model, 

sample size per hectare (n.ha-1) shows no significant positive correlations with spatial variability measures. VC 

has a negative and significant correlation only with NT (r=-0.514). The range is positively and significantly 

correlated with SDI (r=0.609) and SDM (r=0.666). SDI, SDM, and SPD correlate positively and significantly 

(r>0.383). 

For the Gaussian model, stems ha-1 showed no significant positive correlations with spatial variability 

measures. The range does not have positive and significant correlations with the measures of spatial 

variability. VC does not present negative and significant correlations with measures of spatial variability. SDI 

correlates positively and significantly with SDM (r=0.821) and SPD (r=0.500), but SDM and SPD do not 

correlate. 

For the spherical model, the n.ha-1 has a positive and significant correlation only with SPD (r=0.404). 

The range does not present positive and significant correlations with the measures of spatial variability. VC 

presents negative and significant correlations with SDI (r=-0.369), SDM (r=-0.319) and SPD (r=-0.340). SDI, 
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SDM, and SPD correlate positively and significantly (r>0.440). 

 

Table 2. Spearman correlations between spatial variability measurements, range, sample size per hectare 

(n.ha-1) and CV (%) in exponential, Gaussian and spherical semivariograms. 
 

 SDI (%) SDM (%) SPD (%) 

Exponential [n=88] 

n.ha-1 -0,253* -0,285* -0,148ns 

Alcance (m) 0,609* 0,666* 0,052ns 

CV (%) [n=31] 0,083 ns 0,162 ns -0,514* 

SDI (%)  0,986* 0,498* 

SDM (%)   0,383* 

Gaussian [n=20] 

n.ha-1 -0,036 ns 0,001 ns -0,230 ns 

Alcance (m) -0,070 ns 0,186 ns -0,189 ns 

CV (%) [n=19] 0,460* 0,484* 0,284 ns 

SDI (%)  0,821* 0,500* 

SDM (%)   0,008 ns 

Spherical [n=85] 

n.ha-1 0,182 ns 0,021 ns 0,404* 

Alcance (m) -0,206 ns 0,062 ns -0,516* 

CV (%) [n=80] -0,369* -0,319* -0,340* 

SDI (%)  0,894* 0,763* 

SDM (%)   0,440* 

*Significant Spearman correlation at 5% probability. ns Spearman's correlation not significant. 

 

In theory, the correlation between sample size per hectare (n.ha-1) and spatial variability measures is 

expected to be positive and significant. However, this occurs only with SPD for the spherical model, showing 

a moderate correlation. 

In addition, theoretically, the correlation between VC and measures of spatial variability is expected to 

be negative and significant. Negative correlations between CV and spatial variability metrics support that 

stronger spatial structure is linked to higher sampling precision, as lower CV values (indicating greater 

precision) correspond to higher spatial variability measurements. In their study, FU et al. (2011) do not observe 

a correlation between VC and RNE (or between VC and SPD). 

Overall, SDI, SDM, and SPD showed significant positive correlations with each other, except for the 

Gaussian model, where no significant correlation was found between SDM and SPD. SANTOS et al. (2018) 

observed that both exponential and spherical models showed significant positive correlation between SDI and 

SPD. In addition, SANTOS et al. (2018) for all three semivariogram models, the range shows a significant 

positive correlation with SDI but not with SPD. Range is a key geostatistical parameter that can be used to 

determine sample size requirements (OLIVEIRA et al. 2014). 

Table 3 shows the frequency distribution of spatial variability classes for SDI, SDM, and SPD across 

different semivariogram models. It is observed that in the exponential semivariogram there are more strong 

classifications for all measurements. In the Gaussian and spherical semivariograms, moderate classifications 

are more frequent according to SDI and SPD measures, while weak classifications are more common based 

on SDM. According to SEIDEL & OLIVEIRA (2016), who employed SDI and SPD indices, moderate 

classifications were more prevalent in exponential and spherical semivariograms, while Gaussian 

semivariograms showed predominantly weak classifications for SDI and strong classifications for SPD. 
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Table 3. Classifications of SDI, SDM and SPD measures for the exponential (EXP), Gaussian (GAUS) and 

spherical (SPH) semivariograms. 
 

Model SDI* Total 

 Weak Moderate Strong 

EXP 19 (21,59%) 24 (27,27%) 45 (51,14%) 88 (100,00%) 

GAUS 6 (30,00%) 10 (50,00%) 4 (20,00%) 20 (100,00%) 

SPH 34 (40,00%) 43 (50,59%) 8 (09,41%) 85 (100,00%) 

Model SDM$ Total 

 Weak Moderate Strong 

EXP 32 (36,36%) 19 (21,59%) 37 (42,05%) 88 (100,00%) 

GAUS 10 (50,00%) 7 (35,00%) 3 (15,00%) 20 (100,00%) 

SPH 44 (51,76%) 35 (41,18%) 6 (07,06%) 85 (100,00%) 

Model SPD# Total 

 Weak Moderate Strong 

EXP 1 (01,14%) 27 (30,68%) 60 (68,18%) 88 (100,00%) 

GAUS 2 (10,00%) 10 (50,00%) 8 (40,00%) 20 (100,00%) 

SPH 18 (21,18%) 48 (56,47%) 19 (22,35%) 85 (100,00%) 
*Classification by SEIDEL & OLIVEIRA (2016). $Classification of APPEL NETO et al. (2020). #Classification adapted from 
CAMBARDELLA et al. (1994). 

 

Overall, the SDI classified 30.57% of attributes as having weak spatial variability, 39.90% as moderate, 

and 29.53% as strong. The SDM classifies 44.56% as having weak spatial variability, 31.61% as moderate 

and 23.83% as having strong spatial variability. Finally, SPD classified 10.88% of the attributes with weak 

spatial variability, 44.04% with moderate, and 45.08% with strong variability. According to SEIDEL & OLIVEIRA 

(2016), in the SDI, 23%, 46%, and 31% of soil attributes showed weak, moderate, and strong spatial variability, 

respectively. In the SPD, these values were 1%, 61%, and 38%, respectively. 

The SPD tends to generate more classifications of spatial variability from moderate to strong. Therefore, 

SPD should only be considered to generate moderate spatial variability classification when its value reaches 

at least 45% (1st quartile of overall SPD = 44.78%). This criterion aligns with DALCHIAVON & CARVALHO 

(2012), who established a spatial dependence classification system where values up to 40% indicate weak 

spatial dependence. In addition, it is suggested to maintain a strong SPD rating of at least 75% (median SPD 

overall = 68.57% is relatively close to 75%). The use of the 1st quartile and the median to suggest the cutoffs 

in the classification since the sample distribution of the SPD has a negative asymmetry behavior (Asymmetry 

Coefficient in general = -0.35). This idea is based on the studies of SEIDEL & OLIVEIRA (2016), APPEL NETO 

et al. (2018) and APPEL NETO et al. (2020) showing the cutoff points for SDI and SDM classifications based 

on the median and third quartile, as both measures displayed positive skewed distributions. 

It is concluded that there is greater spatial variability in the exponential semivariogram. O SDI e o SDM 

correlacionam-se com o CV somente no semivariograma esférico. O SPD se correlaciona com o CV nos 

semivariogramas exponencial e esférico. It is suggested to consider a moderate spatial variability from SPD 

values of at least 45%. 
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