Análise do crescimento e desempenho morfofisiológico de três cultivares de quinoa colombiana cultivadas em casa de vegetação

Miguel Ángel García-Parra, Roman Stechauner-Rohringer, Jose Francisco García-Molano, Daniel Ortiz-Gonzalez

Resumo


Quinoa (Amaranthaceae) é um pseudo-cereal nativo produzido em toda a zona sul-americana, onde é utilizada como alimento e alternativa promissora para o cultivo em áreas edafoclimáticas afetadas por fatores antrópicos e naturais. Entre os principais problemas que afetam a produção agrícola, inclui-se aqueles relacionados ao crescimento, desenvolvimento e produção, gerados por limitações de adaptabilidade de novas cultivares em áreas específicas. Por este motivo, esta pesquisa teve como objetivo analisar o crescimento e o comportamento morfológico das cultivares de quinoa Blanca Soracá (BS), Blanca Jericó (BT) e Tunkahuan (T). O estudo foi realizado na estufa da Faculdade de Ciências Agrárias da Universidade de Cauca (Colômbia) a 1880 m.a.n.m A análise permitiu reconhecer que as três cultivares de quinoa apresentam diferentes épocas de desenvolvimento fenológico até a colheita (138,25 ± 2,3 e 161 ± 1,1 dias). O número de folhas, a altura das plantas e o número de ramos mostram ajuste às equações de regressão sigmoidal (R2 0,99 – 0,98) para as cultivares BJ e T, enquanto o teor de clorofila total foi ajustado para comportamento cúbica (R2 0,90 – 0,89). As cultivares de quinoa expressam comportamentos produtivos associados a ciclos precoces e tardios, mostrando diferenças na produção e peso das sementes.


Palavras-chave


clorofila, morfologia, fenologia, cultivares.

Texto completo:

PDF (English)

Referências


AGUILAR S et al. 2012. La curva en S como herramienta para la medición de los ciclos de vida del producto. Journal of Technology Management & Innovation 7: 238-248.

APAZA V et al. 2013. Catálogo de Variedades Comerciales de Quinua en Perú (FAO). Lima: Ministerio de Agricultura y Riego de Perú. 82p.

BASCUÑÁN-GODOY L et al. 2018a. Nitrogen supply affects photosynthesis and photoprotective attributes during drought-induced senescence in quinoa. Frontiers in Plant Science 9: 1-14.

BASCUÑÁN-GODOY L et al. 2018b. Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae). Scientific Reports 8: 1-12.

BAZILE D et al. 2014. Diversity of quinoa in a biogeographical Island: A review of constraints and potential from arid to temperate regions of Chile. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42: 289-298.

BHARGAVA A et al. 2007. Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genetic Resources and Crop Evolution 54: 167-173.

BOIS JF et al. 2006. Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. European Journal of Agronomy 25: 299-308.

CASIERRA-POSADA F et al. 2007. Análisis del crecimiento en frutos de tomate (Lycopersicon esculentum Mill.) cultivados bajo invernadero. Agronomía Colombiana 25: 299-305.

CHRISTIANSEN JL et al. 2010. Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agriculturae Scandinavica Section B: Soil and Plant Science 60: 539-544.

GARCÍA-PARRA MA et al. 2018. Evaluación del efecto de la fertilización química y orgánica en la composición bromatológica de semillas de quinua (Chenopodium quinoa Willd) en Boyacá, Colombia. Revista de Investigación Agraria y Ambiental, 9: 99-108.

GARCÍA-PARRA MA et al. 2019. Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agronomía Colombiana 37: 144-152.

GARCÍA-PARRA MA & PLAZAS-LEGUIZAMÓN NZ. 2018. La quinua (Chenopodium quinoa Willd) en los sistemas de producción agraria. Revista Producción + Limpia 13: 112-119.

GEREN H. 2015. Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under mediterranean climate conditions. Turkish Journal of Field Crops 20: 59-64.

GONZÁLEZ JA et al. 2014. Asimilación fotosintética máxima en variedades de quinoa (Chenopodium quinoa) de diferentes orígenes geográficos y su relación con la morfología foliar. Lilloa 51: 177-193

GUERRERO-LÓPEZ A. 2018. Impacto del cultivo de la quinua (Chenopodium quinoa Willd.) como alternativa productiva y socioeconómica en la comunidad indígena Yanacona de La Vega, Cauca, Colombia. Thesis (Doctorate in Agroecology). Cauca: Universidad Nacional de Colombia. 133p.

HUSSAIN MI et al. 2018. Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiology and Biochemistry 129: 411-420.

INFANTE RH et al. 2018. Morphological characterization of varieties Chenopodium quinoa cultivated in the department of Boyacá, Colombia. Revista UDCA Actualidad & Divulgación Científica 21: 329-339.

ISSA O et al. 2019. Physiological and morphological responses of two quinoa cultivars (Chenopodium quinoa Willd.) to drought stress. Gesunde Pflanzen 71: 123-133.

LESJAK J & CALDERINI DF. 2017. Increased night temperature negatively affects grain yield, biomass and grain number in chilean quinoa. Frontiers in Plant Science 8: 1-11.

MADRID D et al. 2018. Morphological traits defining breeding criteria for coastal quinoa in Chile. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46:190-196.

MARADINI A et al. 2015. Quinoa: nutritional, functional and antinutritional aspects. Critical Reviews in Food Science and Nutrition. p.37-41.

MARSCHNER P. 2012. Mineral nutrition of higher plants. Elseiver Ltd. Australia. 672p.

MELO ORTIZ DI. 2016. Studio di adattabilità colturale della quinoa (Chenopodium quinoa Willd.) in italia settentrionale. Tesi (Dottorato Sistema agroalimentare). Piacenza: Università Cattolica del Sacro Cuore. 147p.

NOULAS C et al. 2017. Adaptation, agronomic potential, and current perspectives of quinoa under Mediterranean conditions: caso studies from the lowlands of central Greece. Communications in soil science and plant analysis 48: 2612-2629.

PODKÓWKA Z et al. 2018. The influence of additives facilitating ensiling on the quality of quinoa (Chenopodium quinoa Willd.) silage. Journal of Central European Agriculture 19: 607-614.

RAMZANI PMA et al. 2017. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant Physiology and Biochemistry 116: 127-138.

REGUERA M et al. 2018. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 14: 1-20.

RICCARDI M et al. 2014. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynthesis Research 120: 263-272.

RUIZ HERNANDEZ VC et al. 2013. Variabilidad cualitativa y cuantitativa de accesiones de amaranto determinada mediante caracterización morfológica. Revista Mexicana de Ciencias Agrícolas 4: 789-801.

SOSA-ZUNIGA V et al. 2017. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology 171: 117-124.

YANG A et al. 2016. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Functional Plant Biology 43: 632-642.




DOI: https://doi.org/10.5965/223811711912020073

Apontamentos

  • Não há apontamentos.


______________________________________________________________________________________________________________________________

Revista de Ciências Agroveterinárias (Rev. Ciênc. Agrovet.), Lages, SC, Brasil        ISSN 2238-1171