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ABSTRACT 
 

Crude glycerine is a residue generated from the production of biodiesel. As there was an increase in the 

demand for biodiesel observed in recent years, there was also a concomitant increase in the production of 

glycerin, and this by-product is not being used by industries. Thus, new alternatives can be viable, such as 

the use in dairy cows’ food. The use of glycerin in the animal diet has shown to be a viable alternative to 

nutritional and economic aspects. Our aim in this review was to demonstrate the use of glycerin in dairy 

cow diets and the possible effects on its milk production. In several studies it is possible to observe that the 

crude glycerin can be included in the diet of ruminant animals without causing negative effects on their 

metabolism, ruminal fermentation and milk production. Studies on the deleterious effects of the inclusion of 

crude glycerin with high methanol content in the dairy cow diet should be performed. 
 

KEYWORDS: glycerol, methanol, sensorial feed additives. 

 
RESUMO 
 

 

A glicerina bruta é um resíduo oriundo da produção de biodiesel. Com o aumento da demanda por 

biodiesel nos últimos anos, houve também um aumento na produção de glicerina, um co-produto que não 

é utilizado pelas indústrias. Assim, novas alternativas podem ser viáveis, como o uso na alimentação de 

vacas leiteiras. O uso da glicerina na dieta dos animais demonstra ser uma alternativa viável no que diz 

respeito aos aspectos nutricionais e econômicos. Nosso objetivo nesta revisão foi abordar a utilização da 

glicerina em dietas de vacas leiteiras e seus possíveis efeitos sobre a produção de leite. Em vários 

estudos, é possível observar que a glicerina bruta pode ser incluída na dieta de ruminantes sem causar 

efeitos negativos sobre o metabolismo, fermentação ruminal e produção de leite. Estudos sobre os efeitos 

deletérios da inclusão de glicerina em bruto com alto teor de metanol na dieta de vacas leiteiras devem 

ser realizados.  
 

PALAVRAS-CHAVE: glicerol, metanol, aditivos sensoriais na alimentação animal. 

 
 
INTRODUCTION 
 

Biodiesel is a renewable fuel, mainly produced by esterified vegetable oil or animal fat with methanol, 

having alkali as a catalyzer (HU et al. 2012). Brazil produced 2.5 billion liters of biodiesel in 2013. It is 

estimated that each liter of biodiesel generates approximately 100 mL of the by-product crude glycerin 

(DASARI et al. 2005), containing variable glycerol content (WILBERT et al. 2013). Glycerol has energy 

content similar to corn starch and can be used as animal food (DONKIN et al. 2009, WILBERT et al. 2013). 

However, crude glycerin contains impurities, such as methanol, sodium hydroxide, fat, esters, and low 

amounts of sulfur, protein, and minerals (CELIK et al. 2008). 

 Crude glycerin may contain up to 14% of methanol (HANSEN et al. 2009), which has been shown to 

be potentially toxic to animals (CHALMERS 1986). Refining crude glycerol to pure glycerin (>98% glycerol 

content) would make it a more desirable feed source, however it may not be economically feasible (HU et al. 

2012). Glycerol, the main component of crude glycerin, has high energy content, which is approximately the 

same as that of corn starch and can be used for animal feeding (DONKIN et al. 2009, WILBERT et al. 2013).  

One of the major challenges for the use of crude glycerin is the inconsistency of its composition since 

it varies with the feedstocks, production processes, and post-treatments involved in the biodiesel production. 

Upgrading or refining crude glycerol to technical grade glycerin (>98% glycerol content) makes its 

composition more consistent, but currently this is not economically viable (HU et al. 2012). One concern is 
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about the methanol content in crude glycerin, in a range of <0.01 to 13.94% (HANSEN et al. 2009). Methanol 

is metabolized to formaldehyde by the liver enzyme alcohol dehydrogenase (ADH) (BARCELOUX et al. 

2002, KRAUT & KURTZ 2008).  

Formaldehyde is then metabolized via enzyme formaldehyde dehydrogenase to formic acid format 

then being metabolized to CO2 and H2O, a process that depends on liver tetrahydrofolate concentrations 

(BARCELOUX et al. 2002, KERNS et al. 2002). This pathway is easily saturable, contributing to the 

accumulation of formic acid in the blood (KRAUT & KURTZ 2008). Formic acid can cause metabolic 

acidosis, hyperosmolality, retinal damage with blindness, putaminal damage with neurologic dysfunction 

(KRAUT & KURTZ 2008). Our objective in this review was to address issues about the dairy cow 

performance, digestion, metabolism and blood acid-base balance in response to the inclusion of crude 

glycerin. 

 

LITERATURE REVIEW 
 

Glycerol 

Glycerol is a carbohydrate molecule (C3H8O3), odorless, hydroscopic, sweet-tasting liquid that has 

the potential to replace corn in the diet. SCHRÖDER & SÜDEKUM (1999) estimated that glycerol has net 

energy value of 1.98-2.29 Mcal/kg, which is approximately equal to the energy contained in corn starch. The 

corn grain net energy content is approximately 2.0 Mcal/kg (NRC 2001). According to the FDA (2006), 

glycerol is recognized as a safe ingredient to use as animal feed. 

Glycerol is present in crude glycerin from biodiesel production or can be purchased as pure glycerol, 

with more than 99% purity. According to LINKE et al. (2004), in order to be glucogenic, glycerol must be 

delivered in water to associate with the liquid fraction of the rumen contents or be able to bypass rumen in a 

way to be absorbed as glycerol. In the rumen, glycerol may be converted to propionic and butyric acids. 

Glycerol converted to butyrate will be metabolized to β-hydroxybutyrate (BHBA) by the rumen epithelium. 

Therefore, glycerol metabolized to butyrate is ketogenic, rather than glucogenic. Glycerol that bypasses 

ruminal fermentation may be a highly efficient glucogenic substrate, because it can enter the 

gluconeogenesis pathway in the liver at the triose phosphate level and is not dependent on the rate limiting 

enzymes pyruvate carboxylase and phosphenolpyruvate carboxykinase for its conversion to glucose by 

glycerol kinase (LENG 1970). Glycerol kinase converts glycerol (Km=3 to 10 µM) (LIN 1977) and ATP to 

glycerol-3-phosphate and ADP, an intermediate step where glycerol is directed to glycolysis or 

gluconeogenesis.  

Dairy cows in negative energy balance have pathways activated for the use of glycerol released by the 

mobilization and hydrolysis of triglycerides from body fat. This activity depends on the absorption of glycerol 

rather than the fermentation of glycerol to propionate and butyrate (HIPPEN et al. 2008). The single most 

important nutrient required for milk synthesis is glucose, although nearly all glucose consumed by the dairy 

cow is degraded in the rumen to volatile fatty acids (VFA), which are absorbed and metabolized by the liver 

(HIPPEN et al. 2008). 

During lactation, over 70% of the synthesized glucose is used for milk production (ELLIOT 1976). The 

liver is responsible for converting propionate from starch fermentation in the rumen, glucogenic amino acids, 

and glycerol from adipose triglycerides into glucose (HIPPEN et al. 2008). HARZIA et al. (2013) evaluated 

the replacement of starch with crude glycerin. Eight primiparous mid-lactation dairy cows were used in a 

replicated 4 x 4 Latin Square experiment with 21-d periods, having one square of rumen cannulated cows. 

Four iso-energetic diets were evaluated. Control cows were fed barley based TMR (T0), and other 

treatments were formulated by replacing 1 kg (T1), 2 kg (T2), and 3 kg (T3) of barley with crude glycerin. The 

crude glycerin had 82.6% glycerol, 9.3% salts, 7.1% water, 0.6 ether extract, and 0.4% methanol. 

Treatments T2 and T3 increased the molar proportion of propionate and butyrate in rumen VFA. Treatment 

T3 increased rumen valerate proportion. Glycerol increased milk protein and lactose contents. Milk 

coagulation was increased as barley was replaced with glycerin. 

DONKIN et al. (2009) evaluated the effect of feeding glycerol as a replacement to corn grain on intake, 

milk yield, milk composition, and total-tract nutrient digestibility in lactating cows. Sixty Holsteins were 

blocked based on parity and milk yield and randomly assigned 56 days for diets containing 0, 5, 10 or 15% 

pure glycerol. Daily milk yield was around 37 kg and was not affected by the treatment. In the last week of 

the experiment, a modest decrease in dry matter intake (DMI) of cows fed 15% glycerol was observed. Milk 

urea-N content was reduced by glycerol feeding. Milk solids content did not differ. Total tract neutral 

detergent fiber (NDF) digestibility was lower for cows fed 5% glycerol. There was a linear increase in blood 

glucose content in response to glycerol feeding. Replacing corn  with up to 15% glycerol in the diet had no 



 
 
 

Zacaroni & Souto 
 

Rev. Ciênc. Agrovet., Lages, SC, Brasil (ISSN 2238-1171) 406 
 
 

adverse effect on milk yield or composition.  

BOYD et al. (2011) evaluated the effect of direct-fed microbial and glycerol supplementation (2x2 

factorial) with milk yield, feeding efficiency, and nutrient digestibility during the hot weather. Sixty mid-

lactation Holsteins were fed for 10 weeks after a 2-week standardization period: Cows received 400 g/d of 

glycerol. There was no detectable interaction between factors, except for the total tract nutrient digestibility. 

Apparent digestion of forage dry matter (DM), crude protein (CP), Acid Detergent Fibre (ADF) in the rumen 

was increased in cows supplemented with glycerol. There was no glycerol effect on DMI, milk yield, body 

temperature, or blood glucose content. CARVALHO et al. (2011) replaced corn with pure glycerol in diets for 

transition dairy cows. Twenty-six multiparous Holsteins were paired blocked based on expected calving date 

and randomly assigned to a diet containing high moisture corn or glycerol plus soybean meal. Treatments 

were fed from 28 days before the expected calving date to 56 d postpartum. Glycerol was included at 11.5 

and 10.8% of diet DM during the pre-partum and post-partum periods, respectively. There was no treatment 

effect on pre- and post-partum DMI, milk yield, milk composition, milk urea-N, and energy balance. Pre-

partum blood glucose content was decreased in cows fed with glycerol, and this same trend was observed 

post-partum. Blood β-hydroxybutyrate (BHBA) concentration was increased by glycerol feeding. Glycerol 

increased the ruminal concentrations of propionate, butyrate, and valerate, and decreased acetate, 

isobutyrate, and the acetate to propionate ratio. 

Crude glycerin  

Crude glycerin is a major byproduct from the biodiesel production process. It is estimated that 

approximately 1 kg of crude glycerin is generated for every 10 kg of biodiesel produced (HU et al. 2012). 

With the rapid growth of the world’s biodiesel production in recent years, a large surplus of glycerin has been 

created (JONHSON & TACONI 2007). The production of biodiesel in the world in 2013 was 25 billion liters, 

Brazil produced around 11% (BIOFUEL DIGEST 2013). It was projected that the world biodiesel market 

would reach 140 billion liters by 2016, which implied 15 billion liters of crude glycerin (ANAND & SAXENA 

2011).  

According to the “Agência Nacional de Vigilância Sanitária” (ANVISA 1999) (Resolution 386/1999), 

glycerin use is an allowed humectant for human and animal consumption. However, glycerin quality 

standards were not defined when used as animal feed, nor the obligation of prior registration for glycerin 

(ANVISA 1999). In May 2010, the “Ministério da Agricultura, Pecuária e Abastecimento” (MAPA) regulated 

the use of glycerin (crude and blonde) as a feed ingredient for animals and defined quality standards, such 

as the contents of glycerol (minimum 800 g/kg), moisture (maximum 130 g/kg), methanol (maximum 159 

mg/kg), sodium, and minerals. The glycerol content of glycerin (Purity) is variable and reflects the different 

stages of biodiesel production. Low purity glycerin has high content of water and methanol. High purity 

glycerin (>99% of glycerol) is the most valuable product, however the identification of alternative uses for low 

purity glycerin may make biodiesel production more competitive in the growing global biofuel market 

(OMAZIC et al. 2013).  

Crude glycerin has little economic value due to the presence of various impurities such as methanol, 

soap, fatty acid methyl esters, and alkaline catalyst residues (HU et al. 2012, MCCOY 2006, SANTIBANEZ 

et al. 2011). Crude glycerin availability has become a serious issue for the biodiesel industry (JOHNSON & 

TACONI 2007). Considerable research has been conducted on potential uses of crude glycerin. Impurities 

present in crude glycerin significantly affect its proprieties and its conversion to value-added products (HU et 

al. 2012). Soap and methanol can have negative impacts on algae production of docosahexaenoic acid from 

crude glycerin (PYLE et al. 2008). The high salinity (sodium or potassium) from crude glycerin can inhibit 

microbial activity when crude glycerin is anaerobically digested (SANTIBANEZ et al. 2011).  

HU et al. (2012) described the physical and chemical properties of five crude glycerin samples from 

biodiesel production. Density ranged from 1.01 to 1.20 g/cm³ and was lower than the density of pure glycerin 

(1.31 g/cm³). Sample pH ranged from 6.4 to 10, the pH value of pure glycerin was 6.4. However, in the study 

of HANSEN et al. (2009), the pH of 11 crude glycerin samples ranged from 2.0 to 10.8.  

Methanol 

The rumen commonly produces methanol as a product of methyl ester hydrolysis from pectin driven by 

bacteria and protozoa. The ruminal concentration of methanol is around 28 µg/mL (POL & DEMEYER 1988, 

VANTCHEVA et al. 1970). Methanol is not likely accumulated in ruminal fluid since it can be used by 

methylotropic organisms and can be converted to acetate or butyrate (NEUMANN et al. 1999). It has also 

been reported that methanol in excess of what can be metabolized in the rumen has severe effects in 

ruminants, causing inhibition of milk synthesis, anorexia, dullness, and death (CHALMERS 1986). 

Methanol is metabolized to formaldehyde by the liver enzyme alcohol dehydrogenase (ADH) 

(BARCELOUX et al. 2002, KRAUT & KURTZ 2008). Formaldehyde is metabolized by the enzyme 
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formaldehyde dehydrogenase to formic acid. Formate is metabolized to CO2 and H2O, a process that is 

dependent on liver tetrahydrofolate concentration (BARCELOUX et al. 2002, KERNS et al. 2002). This 

pathway is easily saturable, leading to formic acid accumulation in the blood (KRAUT & KURTZ 2008). 

Formic acid can cause metabolic acidosis, hyperosmolality, retinal damage with blindness, putaminal 

damage with neurologic dysfunction (KRAUT & KURTZ 2008).  

WINSCO et al. (2013) evaluated the effect of methanol on intake and digestion in beef cattle. Four 

ruminally cannulated Holstein steers, in a 4 x 4 Latin Square, had ad libitum access to a grain-based diet 

(48.9% corn, 10% molasses, 16% cottonseed meal, 15.6% cottonseed hulls, 7.5% rice bran, 31.1% starch, 

and 14.7% crude protein). Treatments consisted of four levels of methanol (0. 70, 140 and 210 g/d) infused 

directly into the rumen. Experimental periods were 16-days long, with 10 for adaptation and 6 for sampling. 

Infusions of increasing levels of methanol increased the ruminal concentration from 0 to 6,563, 13,356, and 

19,831 ppm. Daily DMI, and ruminal pH, total VFA concentration, and the molar proportion of acetate did not 

differ among treatments. A quadratic trend for a reduction in propionate proportion was observed, and was 

likely the result of a quadratic increase in butyrate. No adverse health or well-being effects were observed 

when methanol was infused. 

Glycerin as feed ingredient  

ZACARONI (2010) evaluated the response of lactating cows to the complete replacement of finely 

ground mature corn by crude glycerin in a crossover design experiment with 21-d periods. An iso-

nitrogenous mixture of crude glycerin plus soybean meal replaced finely ground mature corn in the diet. The 

crude glycerin contained 6.29% moisture, 76.2% glycerol, 1.33% ether extract, 2.93% ash, and 0.88% 

methanol. The dietary content of glycerin was 12.3% of DM, the content of corn was 14.8% in the Control 

diet. The replacement of corn with crude glycerin depressed milk yield by 10%, without affecting intake, and 

reduced feed efficiency. Glycerin feeding reduced the daily secretion of lactose, and there was a trend for 

reduced milk protein secretion. Total tract apparent digestibility of organic matter (OM) was increased when 

glycerol replaced starch. Glycerin increased the molar proportion of butyrate and decreased the proportion of 

acetate in rumen fluid but had no effect on ruminal propionate. Glycerin reduced the content of glucose in the 

blood plasma.  

SHIN et al. (2012) evaluated the replacement of ground corn, corn gluten feed, and citrus pulp with 

crude glycerin for dairy cows. Twenty four Holsteins, in a 2x3 factorial arrangement of treatments, were fed 

two roughage sources (cottonseed hulls or corn silage) and three dietary concentrations of glycerin (0, 5, or 

10% of DM). Crude glycerin contained 12% water, 5% fat, 6.8% sodium chloride, and 0.4% methanol. Crude 

glycerin at 5% of diet DM increased DMI without affecting milk yield. For these diets with low fiber content 

(24.4% NDF), the content of milk fat (3.12% for 0% glycerin) was reduced when 10% glycerin was fed 

(3.03%). Total tract NDF digestibility was also 30% lower for the 10% glycerin diet compared to Control. 

Diets with 5 and 10% crude glycerin improved 4% fat-correct milk when corn silage was fed, but decreased it 

when cottonseed hulls replaced corn silage. 

OMAZIC et al. (2013) evaluated the effect of low and high purity glycerin on intake, lactation 

performance, blood metabolites and body condition scores (BCS) for dairy cows. Forty-two cows were 

allocated to 14 blocks based on parity and expected day of parturition and were randomly assigned to a 

treatment. Treatments were: Control, and low or high purity glycerin, both at 0.5 kg/d, starting at day 2 

postpartum for 28 days. The low purity glycerin contained 88.1% glycerol, 9.3% moisture, 0.9% ash, and 

0.8% methanol. High purity glycerin contained 99.5% glycerol. Grass silage and concentration were fed 

separately four times a day. Glycerin was top dressed to the concentrate at 9 AM and 5 PM, in equal 

amounts. Low and high purity glycerin had no effect on BCS and silage and total intakes. There were trends 

for increased yield of milk and contents of fat and protein for cows fed high compared to low purity glycerin, 

but milk lactose content responded in the opposite direction to the same treatments. Treatments had no 

effect on the content in plasma of glucose, insulin, non-esterified fatty acid (NEFA), and BHBA. 

BOYD et al. (2013) evaluated the effect of replacing a portion of ground corn with crude glycerin on 

rumen fermentation profile, blood metabolites, and nutrient digestibility in lactating cows. Six rumen 

cannulated Holsteins (56 ± 18 DIM) producing 38±8.2 kg of milk/d were used. The design was a replicated 

3x3 Latin Square with 4-week periods. Treatments were: Control, 200 g of glycerin/d (G2), or 400 g of 

glycerin/d (G4). Glycerin contained 80 to 85% glycerol, 14% moisture, 7% sodium chloride and 18 ppm of 

methanol. There was a decrease in DMI with increasing amounts of glycerin. Milk yield was reduced by 1.8 

kg/d and 2.4 kg/d for G4 compared with Control and G2. Treatment G2 reduced milk fat content and yield 

compared to Control. Blood glucose and urea-N did not differ among treatments. The molar proportions in 

rumen fluid of acetate and valerate and the acetate to propionate decreased, and the proportion of 

propionate and butyrate increased with increased glycerin feeding.  
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Eight Jerseys received diets containing 0, 4, 8, and 12% crude glycerin (WILBERT et al. 2013). The 

design was a replicated 4x4 Latin Square with 17-d periods. The crude glycerin contained 81.4% glycerol, 

14% moisture, 1.1% CP, and greater than 50 ppm methanol. Crude glycerin had no effect on milk and 

energy correct milk yield, and on fat, lactose, and total milk solids content and yield. Milk protein content was 

increased by 12% and 8% crude glycerin in the diet. There was no treatment effect on intake, digestibility of 

DM, OM and NDF, and serum concentrations of NEFA and urea-N. The response in plasma glucose to 

glycerol feeding was quadratic, with a reduction at the lower levels (4 and 8% crude glycerin) and 

subsequent increase (12% crude glycerin).  

In vitro studies  

Early studies on glycerol metabolism suggest that it is rapidly fermented in the rumen. GARTON et al. 

(1961) observed that the disappearance of glycerol after 2 h of incubation in rumen fluid in vitro was 25%, 

and that 90% disappeared when incubations were performed for 8 h. RÉMOND et al. (1993) added glycerol 

to continuous fermenters containing starch or cellulose. Glycerol reduced pH fluid more when starch was the 

substrate than with cellulose. The molar proportion of butyrate was increased only when glycerol was added 

to fermenters containing starch. The authors concluded that glycerol is rapidly fermented in the rumen and 

the response in ruminal propionate and butyrate to glycerol feeding is diet dependent. 

Continuous fermenters were used by ABO EL-NOR et al. (2010) to investigate the effect of 

substituting corn with glycerol at different levels on fermentation profile and DNA concentration of selected 

rumen bacteria. Four dual-flow continuous culture systems were used in 4x4 Latin Square, with 10-day 

periods. Diets were formulated with glycerol (grade: 995 mL/L) at 0 (Control), 36, 72, and 108 g/kg of DM. 

Substituting corn for glycerol had no effect on DM digestibility, however, feeding glycerol at 72 and 108g/kg 

of DM reduced NDF and tended to reduce ADF digestibility compared to Control. The molar proportion of 

acetate decreased with glycerol feeding and was the lowest with 108 g/kg DM. The acetate to propionate 

ratio decreased with 72 and 108g/kg of DM and the molar proportion of butyrate and isovalerate were 

increased by glycerol compared to Control, but were similar among glycerol levels. Glycerol did not 

determine the DNA concentration for Ruminococcus albus and Succinivibrio dextinosolvens. Relative to 

Control, the DNA concentration for Selenomonas ruminantium and Butyrivibrio fibrisolvens were decreased 

on diets containing 72 and 108 g/kg of glycerol. The DNA concentration for Clostridium proteoclasticum was 

decreased by glycerol feeding, but did not differ among glycerol levels. These results suggest that 

substituting corn with glycerol at low level has no adverse effect on fermentation, digestion, and ruminal 

bacteria. Higher substitution levels may have negative impact on fiber digestion and reduce acetate 

production.  

KRUEGER et al. (2010) evaluated the effect of glycerol on ruminal fat lipolysis in vitro. Three levels 

were evaluated: 0, 2 and 20% of glycerol in tubes containing 10% of olive oil. Both levels of glycerol inhibited 

lipolysis, inducing reductions by 48% and 77% in free fatty acid accumulation in rumen fluid as compared to 

Control. The effect of glycerol on fermentation kinetics of alfalfa hay was also evaluated. Five levels of 

glycerol were used: 0, 5, 10, 20 or 40%. Gas production was measured using a computerized gas monitoring 

apparatus. The fast and slow degrading pools were assumed to represent glycerol and fiber, respectively. 

Gas accumulation of the first pool increased linearly as the amount of glycerol was increased. Higher levels 

of glycerol induced a quadratic decrease in first pool fractional rate of fermentation, the fractional rate of 

fermentation was slower at 20% and 40% compared to 0, 5, and 10% glycerol. Glycerol reduced the 

fractional degradation rate of the second pool. Increasing levels of glycerol induced a linear decrease in 

acetate accumulation, and a quadratic increase in propionate, reducing the acetate to propionate ratio. Data 

suggested that long term feeding glycerol might ultimately select and enrich the populations of glycerol 

fermenting microbes such as Megasphaera elsdenii and Selenomonas rumiantium. 

AVILA et al. (2011) evaluated the impact of increasing dietary levels (0, 7, 14, 21% glycerol) on the in 

vitro ruminal fermentation and methane production of a barley based high concentrated diet. Methane 

production did not differ among treatments. However, AVILA et al. (2013), using a semi continuous 

fermentation system to evaluate the inclusion of glycerol at 0, 5, 10 and 15% DM replacing corn silage, 

observed a linear increase in methane in response to increased glycerol levels, resulting in a linear increase 

in the methane to digested DM ratio. Glycerol decreased acetate and increased butyrate and propionate 

production.  

The effects of substituting corn with glycerol as a feed alternative were investigated using continuous 

fermenters by ABO EL-NOR et al. (2010). Four fermenters were used in a 4×4 Latin square design with four 

10-day consecutive periods. Treatment diets contained 0 (T1), 36 (T2), 72 (T3) and 108 (T4) g glycerol/kg 

dry matter (DM). Diets consisted of 600 g/kg alfalfa hay, 400 g/kg concentrate (DM basis), and glycerol 

replaced the corn in the concentrate.  Results showed that neutral detergent fiber digestibility decreased 
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(P<0.05) with the T3 and T4 diets compared with the T1 diet.  

Glycerol substitution had no effects on fermenters pH, NH3-N concentration, and digestibility 

coefficients of DM and acid detergent fiber. The molar proportion for acetate decreased (P<0.05) while the 

molar proportions for butyrate, valerate and isovalerate increased (P<0.05) with the glycerol diets compared 

with the T1 diet. The DNA concentrations for Butyrivibrio fibrisolvens and Selenomonas ruminantium 

decreased (P<0.05) with the T3 and T4 diets compared with the T1 diet. The DNA concentration for 

Clostridium proteoclasticum also decreased (P<0.05) with glycerol substitution. No differences in the DNA 

concentrations for Ruminococcus albus and Succinivibrio dextrinosolvens between diets were observed. 

Results from this study suggest that substituting corn with glycerol at low level had no adverse effects on 

fermentation, digestion or ruminal bacteria (ABO EL-NOR et al. 2010). 

Glycerol absorption  

Homologous water channel proteins (ROJEK et al. 2008) mediate glycerol transport across epithelia. 

Aquaporins are channels that facilitate the transport of water across the cell membrane (KING et al. 2004). 

These channels possess two highly conserved asparagines-proline-alanine boxes, which is essential to the 

formation of a water-transporting pore (MAEDA et al. 2008). Aquaporins form a simple pore that enables 

water to pass through the cell membrane bidirectionally according to osmosis; they are not pumps or 

exchangers (HUB & GROOT 2008). Thirteen aquaporin subtypes have been identified in mammals 

(CAMPOS et al. 2011, MAEDA et al. 2008). It can be divided into two major groups: those selective for water 

and functioning as water channels (called orthodox aquaporins) and those permeable to small solutes 

including glycerol (called aquaglyceroporins) (CAMPOS et al. 2011).  

Among them, types 3, 7, 9 and 10 are subcategorized as well as water (MAEDA et al. 2008). Two 

subtypes (7 and 9) are highly expressed in adipocytes and the liver and are important parts in the 

homeostasis of metabolism. The expression and physiological function of aquaporins are less investigated in 

ruminants (RØJEN et al. 2011). Glycerol channels were presumed to prevent acute rises in intracellular 

osmotic pressure while glycerol production was increased during lipolysis in adipocytes. The identification of 

aquaglyceroporins, however, indicated a mechanism of glycerol metabolism, especially in adipocytes and 

hepatocytes (MAEDA et al. 2008). AQP3 expression has been reported in several mammalian tissues 

including kidney, epidermis, urinary, respiratory and digestive tracts (TAKATA et al. 2004), and human 

erythrocyte (ROUDIER et al. 1998). AQP3 is moderately permeable to water, but highly permeable to 

glycerol and possibly to urea (CAMPOS et al. 2011). 

 RØJEN et al. (2011) observed the AQP3 expression in ruminal papillae and mRNA expression and 

protein abundance are affected by diet. AQP7 is highly expressed in white and brown adipose tissues from 

rats and humans, and a weak expression is also observed in cardiac and skeletal muscle and the kidney 

(MAEDA et al. 2008).  

 

CONCLUSION 
 

In several studies it is possible to observe that the crude glycerin can be included in the diet of 

ruminant animals causing no negative effects on dairy cow performance, digestion, metabolism and blood 

acid-base balance. It is necessary to know the glycerin composition for the correct application. Studies on 

the deleterious effects of the inclusion of crude glycerin with high methanol content in the ruminant animal 

diet should be performed. 
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